
Session code:

Advanced Performance Diagnostics for SQL

David Kalmuk

IBM
D04

Monday November 5th, 16:30 Db2 for Linux, Unix, Windows

Objectives

• Learn how to pinpoint your most expensive SQL statements using the

package cache table functions

• Learn how to analyze where a problem query is spending its time using

time spent metrics

• Learn how to monitor query sort memory usage and spilling

• Learn how to use the runtime explain capabilities and activity event

monitor to capture both the actual cardinalities and the new object

metrics for a problem query.

• Take away practical examples you can try out in your own environment.

Agenda

• A quick review of the core DB2 monitoring capabilities

• Identifying high impact SQL statements

• Analyzing queries using Time Spent

• Monitoring query sort memory usage and spilling

• Advanced diagnostics using Runtime Explain and Section Actuals

A Quick Review of Db2’s Monitoring Capabilities

DB2 Monitoring Basics

• How do I monitor what DB2 is doing?
• Real-time in-memory metrics using SQL functions

• Historical data captured using event monitors

• Also of note
• Snapshot monitoring

• db2pd

• For this session we’ll focus on the latest generation of monitoring

capabilities introduced starting in DB2 9.7

Lightweight Monitoring Functions

• MON_* SQL functions introduced starting in DB2 9.7

• Less impact / more efficient then snapshot functions
• Direct in-memory access through trusted routines (not fenced wrappers over snapshot apis)

• Much less latch contention
• Uses new infrastructure that pushes data up to accumulation points rather than forcing monitor queries to do extensive

drilldown

• Lower CPU consumption

• Significantly faster response time

• Less FCM resource usage / internode traffic

• Monitoring data collection carries low overhead – is enabled by

default on new databases

Monitoring Perspectives and Dimensions

• DB2 allows monitoring metrics to be accessed through a number of different reporting
dimensions

• Allows more effective drilldown, and different perspectives on the data to help isolate
problems

• Three main dimensions, each consisting of a number of reporting points with
corresponding routines

• System / Request
• Provide total perspective of application work being done by database system
• Aggregated through the WLM infrastructure

• Data objects
• Provide perspective of impact of all activity occurring with the scope of data objects
• Aggregated through data storage infrastructure

• Activity / Query
• Provide perspective of work being done by specific SQL statements
• Aggregated through the package cache infrastructure

In this session
we will spend
our time here

Access Points: Activity Perspective

• MON_GET_PKG_CACHE_STMT
• Both static and dynamic SQL (historical)

• MON_GET_PKG_CACHE_STMT_DETAILS
• XML based output

• MON_GET_ACTIVITY
• Information on current executing activities / queries

• MON_GET_ACTIVITY_DETAILS
• XML based output

Some Additional Tips

• Monitoring data is accumulated and maintained in-memory from point of

database activation until de-activation
• Explicitly activate your database to ensure consistent availability of monitoring metrics

• Monitoring metrics are incremented globally at each of the reporting

levels and do not reset
• To compute changes in metrics over a specific period of time take an initial baseline sample and

compute deltas from that (eg. compute I/O a particular SQL statement has driven over the past 5

mins)

• Event monitors can be utilized to capture and persist event based data for

historical analysis
• Package cache event monitor for aggregate statement data

• Activity event monitor for individual statement executions

9

Identifying High Impact SQL Statements

MON_GET_PKG_CACHE_STMT()

• Ideal entry point for analyzing query problems

• Query a wealth of metrics for any statement that is active in the package
cache
• Rank and order by any of these metric
• Aggregate metrics accumulated after each statement execution
• Both static and dynamic SQL
• Metrics collected by default
• Low overhead

• Retains significant workload information with a modest PCKCACHESZ

• Package Cache Event Monitor can be configured in cases where cache
evictions are causing information to be lost

• Only limitation is that it doesn’t track individual executions

Finding High Impact Queries

select stmt_exec_time, num_executions, stmt_text

from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as s

order by stmt_exec_time desc fetch first 5 rows only

Top 5 queries by
statement

execution time in
server

STMT_EXEC_TIME NUM_EXECUTIONS STMT

-------------------- -------------------- ---

3951764 2218111 SELECT s_quantity, s_dist_01, s_dist_02, …

902078 195866 SELECT c_balance, c_delivery_cnt …

619547 212999 DECLARE CUST_CURSOR1 CURSOR FOR SELEC …

480681 221873 SELECT w_tax, c_discount, c_last, c_credit …

441494 20124 SELECT count(distinct S_I_ID) INTO :H …

Statement
with most

execution time
in the server

More High Impact Queries

select stmt_exec_time, num_executions,

(total_cpu_time / 1000) as cpu_time,

stmt_text

from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as s

order by cpu_time desc fetch first 5 rows only

Top 5 most
CPU intensive

queries

select stmt_exec_time, num_executions,

(pool_read_time + pool_write_time +

direct_read_time + direct_write_time) as io_time

from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as t

order by io_time desc fetch first 5 rows only

Top 5 most
I/O intensive

queries

Queries with the Worst Relative Velocity

select total_act_time, total_act_wait_time,

(case when total_act_time > 0

then ((total_act_time – total_act_wait_time) * 100

/ total_act_time)

else 100

end) as relvelocity,

stmt_text

from table (mon_get_pkg_cache_stmt(null,null,null,-2)) as t

order by relvelocity fetch first 5 rows only

Relative
velocity shows
the degree to
which progress
of the query is
impacted by

waits

Compute
percentage

of query
time where

we’re
processing

TOTAL_ACT_TIME TOTAL_ACT_WAIT_TIME RELVELOCITY STMT_TEXT

-------------------- -------------------- -------------------- --------------------

1481597 1457690 1 DECLARE READ_ORDERLI …

228 223 2 create view dbtimeme …

28 27 3 alter table activity …

30 29 3 create event monitor …

35 33 5 create event monitor …

Majority of
query time

spent in waits!

Queries with the Least Efficient Plans This query
shows us how
much data we
processed to
produce a

single row of
results

ROWS_RETURNED ROWS_READ RATIO STMT

-------------------- -------------------- -------------------- -------------------------

2 11137814 5568907 select count(*) from acti…

1 5568907 5568907 select min(time_completed

3 9 3 select * from syscat.WORK…

9 9 1 select substr(serviceclas…

9 9 1 select * from dbtimedelta…

2843729 2843729 1 DECLARE CUST_CURSOR1 CURS…

2843729 2843729 1 SELECT w_street_1, w_stre…

29599464 29599528 1 SELECT s_quantity, s_dist…

0 14 0 alter table control drop…

0 13 0 create view dbtimemetrics…

select rows_returned, rows_read,

(case when rows_returned > 0

then rows_read / rows_returned

else 0

end) as ratio,

stmt_text as stmt

from table(mon_get_pkg_cache_stmt(null,null,null,-2))

as p

order by ratio desc

fetch first 10 rows only

Ratio of
rows read

to rows
returned

Analyzing Queries using Time Spent

Time Spent Metrics

• Set of metrics in Db2 that break down where time is spent within the
server
• Sum of time spent by each agent thread in the system (foreground processing)
• Provides relative breakdown of time spent

• Which areas are the most expensive during request / query processing
• Available in both the system and activity perspectives

• This presentation will focus on analysis from the activity perspective
• Can be used for rapid identification and diagnosis of performance problems

• Times are divided into:
• Wait times

• Time agent threads spend blocking on I/O, network communications, etc
• Processing times

• Time spent processing in different component areas when the agent was not stuck on a wait
• Summary / total times

• Total time spent in a particular component area including both processing + wait times

“Time Spent” Metrics: Breakdown of Wait + Processing
Times in Db2

Total Request Time in DB2
Direct I/O

Bufferpool I/O

Lock Wait Time

Compile Proc
Time

Section Proc Time

Commit / Rollback
Proc Time

Other Proc Time

SQL Statement Execution

WLM_QUEUE_TIME_TOTAL

STMT_EXEC_TIME

TOTAL_ACT_WAIT_TIME

LOCK_WAIT_TIME

LOG_BUFFER_WAIT_TIME

LOG_DISK_WAIT_TIME

FCM_SEND/RECV_WAIT_TIME

DIAGLOG_WRITE_WAIT_TIME

POOL_READ/WRITE_TIME

DIRECT_READ/WRITE_TIME

(…)

TOTAL_SECTION_PROC_TIME

TOTAL_SECTION_SORT_PROC_TIME

TOTAL_COL_PROC_TIME [new]

TOTAL_ROUTINE_NON_SECT_PROC_TIME

TOTAL_ROUTINE_USER_CODE_PROC_TIME

TOTAL_INDEX_BUILD_PROC_TIME [new]

(Any nested query processing)

Activity Time Spent Hierarchy

Time spent
performing
query plan
execution

“Time spent” metrics are mutually exclusive and in aggregate form a hierarchy (shown below) that breaks down the time spent
executing queries in the database server on behalf of the client. Below we show the hierarchy for the activity perspective.

Analyzing Individual Queries Using Time Spent

•Once we have pinpointed our statements of interest, our next step is

to drill down to understand where they are spending their time

•By understanding where the time is being spent during query

execution we can identify where the database server is spending

effort, and look for opportunities for tuning

•We can use the EXECUTABLE_ID value from problem statements

identified via previous examples to lookup detailed time metrics for

statements of interest and perform more in depth analysis
• Uniquely identifies each query plan in the package cache

“Where is my time being spent?”

select p.executable_id, r.metric_name, r.parent_metric_name,

r.total_time_value as time, r.count, p.member

from

(select stmt_exec_time, executable_id

from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as s

order by stmt_exec_time desc fetch first row only) as stmts,

table(mon_get_pkg_cache_stmt_details(null,

stmts.executable_id,

null,

-2)) as p,

table(mon_format_xml_times_by_row(p.details)) as r

order by stmts.executable_id, total_time_value desc

Executable ID for
our statement(s) of
interest

Find statement
with most time
in server

Show me the
full hierarchy of

waits +
processing times
for a particular

statement

Format XML details to
produce row based
format for time spent
metrics

(continued)
EXEC_ID METRIC_NAME PARENT_METRIC_NAME TIME COUNT MEMBER

------------ -------------------------------- ---------------------- ------- ------ ------

x'00000001…' STMT_EXEC_TIME - 6676617 110191 0

x'00000001…' TOTAL_ROUTINE_NON_SECT_PROC_TIME STMT_EXEC_TIME 6008956 110191 0

x'00000001…' TOTAL_ROUTINE_USER_CODE_PROC_TIME TOTAL_ROUTINE_NON_S 6008956 110191 0

x'00000001…' POOL_READ_TIME TOTAL_ACT_WAIT_TIME 372754 52135 0

x'00000001…' TOTAL_ACT_WAIT_TIME STMT_EXEC_TIME 372754 - 0

x'00000001…' TOTAL_SECTION_PROC_TIME STMT_EXEC_TIME 294907 0 0

x'00000001…' WLM_QUEUE_TIME_TOTAL - 0 0 0

x'00000001…' FCM_TQ_RECV_WAIT_TIME FCM_RECV_WAIT_TIME 0 0 0

x'00000001…' FCM_MESSAGE_RECV_WAIT_TIME FCM_RECV_WAIT_TIME 0 0 0

x'00000001…' FCM_TQ_SEND_WAIT_TIME FCM_SEND_WAIT_TIME 0 0 0

x'00000001…' FCM_MESSAGE_SEND_WAIT FCM_SEND_WAIT_TIME 0 0 0

x'00000001…' LOCK_WAIT_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…' DIRECT_READ_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…' DIRECT_WRITE_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…‘ LOG_BUFFER_WAIT_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…' LOG_DISK_WAIT_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…' POOL_WRITE_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…' AUDIT_FILE_WRITE_WAIT_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…' AUDIT_SUBSYSTEM_WAIT_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…' DIAGLOG_WRITE_WAIT_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…' FCM_SEND_WAIT_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…' FCM_RECV_WAIT_TIME TOTAL_ACT_WAIT_TIME 0 0 0

x'00000001…' TOTAL_SECTION_SORT_PRO TOTAL_SECTION_PROC_T 0 0 0

…

Common Statement Bottlenecks

• I/O bottlenecks
• Large bufferpool read / write times may indicate excessive table scans occurring, spilling to temps, or a poorly

tuned I/O subsystem
• Unexpected direct read / write times may indicate lobs that aren’t inlined properly, or unexpected usage of

temps in query plan

• Locking bottlenecks
• Large lock wait times indicate contention problems in your workload are affecting your query performance

• Routine bottlenecks
• Large routine times may indicate inefficiencies or problems with procedures or user defined functions

• Reclaim wait bottlenecks [PureScale]

• Large reclaim wait times indicate cross member page contention is impacting your query execution

• Diagnostic or audit bottlenecks
• Diag log or audit wait times may indicate cases where diagnostic or audit related logging is unexpectedly

impacting query performance

Latest Time Spent Metrics

• TOTAL_BACKUP_TIME / TOTAL_BACKUP_PROC_TIME /
TOTAL_BACKUPS
• New time spent category for online backups

• TOTAL_INDEX_BUILD_TIME / TOTAL_INDEX_BUILD_PROC_TIME /

TOTAL_INDEXES_BUILT
• New time spent category for index creation / recreations

• TOTAL_COL_TIME / TOTAL_COL_PROC_TIME
• Time spent in the columnar runtime

Example: Assessing Efficiency of Columnar Query

SELECT TOTAL_SECTION_TIME, TOTAL_COL_TIME,

DEC((FLOAT(TOTAL_COL_TIME)/

FLOAT(NULLIF(TOTAL_SECTION_TIME,0)))*100,5,2)

AS PCT_COL_TIME

FROM TABLE(MON_GET_PKG_CACHE_STMT(NULL,NULL,NULL,-1)) AS T

WHERE STMT_TEXT = 'SELECT * FROM TEST.COLTAB A, TEST.ROWTAB B WHERE A.ONE

= B.ONE'

TOTAL_SECTION_TIME TOTAL_COL_TIME PCT_COL_TIME

-------------------- -------------------- ------------

5 4 80.00

Compute the ratio of
columnar processing

time to overall section
processing time to see

how much we’re
leveraging the columnar

runtime
Majority of processing
occurred in the highly

optimized columnar
runtime

Monitoring Query Working Memory Usage and Spilling

Monitoring Sort Memory Usage

• Sort memory can be monitoring through the following metrics
• SORT_SHRHEAP_ALLOCATED (current)

• SORT_SHRHEAP_TOP (high watermark)

• SORT_CONSUMER_SHRHEAP_TOP (per consumer hwm)

• Accessible at multiple levels of reporting
• MON_GET_DATABASE (Database level)

• MON_GET_PKG_CACHE_STMT (Query level)

• MON_GET_SERVICE_SUBCLASS_STATS (Subclass level)

• Others

• Example:
SELECT SORT_SHRHEAP_ALLOCATED,

SORT_SHRHEAP_TOP

FROM TABLE(MON_GET_DATABASE(-1))

Obtain current and
maximum sort usage
for the database

Monitoring Sort Consumers

• Total individual sort consumer counts including
• TOTAL_SORT_CONSUMERS (overall total)
• TOTAL_HASH_GRPBYS
• TOTAL_HASH_JOINS
• TOTAL_OLAP_FUNCS
• TOTAL_SORTS
• TOTAL_COL_VECTORS_CONSUMERS

• Memory throttling and overflow / spill counts
• POST_THRESHOLD_HASH_GRPBYS / HASH_GRPBY_OVERFLOWS
• POST_THRESHOLD_HASH_JOINS / HASH_JOIN_OVERFLOWS
• POST_THRESHOLD_OLAP_FUNCS / OLAP_FUNC_OVERFLOWS
• POST_THRESHOLD_SORTS / SORT_OVERFLOWS
• POST_THRESHOLD_COL_VECTOR_CONSUMERS

Monitoring Sort Consumers

• Active sort consumer counts and high watermarks
• ACTIVE_SORT_CONSUMERS / ACTIVE_SORT_CONSUMERS_TOP

• ACTIVE_HASH_GRPBYS / ACTIVE_HASH_GRPBYS_TOP

• ACTIVE_HASH_JOINS / ACTIVE_HASH_JOINS_TOP

• ACTIVE_OLAP_FUNCS / ACTIVE_OLAP_FUNCS_TOP

• ACTIVE_SORTS / ACTIVE_SORTS_TOP

• ACTIVE_COL_VECTORS_CONSUMERS / ACTIVE_COL_VECTOR_CONSUMERS_TOP

• Also accessible at multiple levels of reporting
• MON_GET_DATABASE (Database level)

• MON_GET_PKG_CACHE_STMT (Query level)

• MON_GET_SERVICE_SUBCLASS_STATS (Subclass level)

• Others

Monitoring for Spilling

with ops as

(select

(total_sorts + total_hash_joins + total_hash_grpbys)

as sort_ops,

(sort_overflows + hash_join_overflows + hash_grpby_overflows)

as overflows,

sort_shrheap_top as shr_sort_top

from table(mon_get_database(-2)))

select sort_ops,

overflows,

(overflows * 100) / nullif(sort_ops,0) as pctoverflow,

shr_sort_top

from ops;

SORT_OPS OVERFLOWS PCTOVERFLOW SHR_SORT_TOP

------------ ------------ ----------- ----------------

1200 300 25 12777216

About 25% of our sort operations
overflowed and spilled indicating
some tuning may be worthwhile

Extract
percentage of sort
operations that
have spilled and
high watermark

sort usage

If SORT_HEAP_TOP is near the
configured SHEAPTHRES_SHR it
indicates that our SORTHEAP is
overconfigured relative to our
concurrency limits

Monitoring Query Sort Usage and Consumers

SELECT SORT_SHRHEAP_TOP,

SORT_CONSUMER_SHRHEAP_TOP,

ACTIVE_SORT_CONSUMERS_TOP,

NUM_EXECUTIONS,

(TOTAL_SORTS +

TOTAL_HASH_JOINS +

TOTAL_HASH_GRPBYS +

TOTAL_COL_VECTOR_CONSUMERS) AS SORT_OPS,

(SORT_OVERFLOWS +

HASH_JOIN_OVERFLOWS +

HASH_GRPBY_OVERFLOWS) AS SORT_OVERFLOWS,

(POST_THRESHOLD_SORTS +

POST_THRESHOLD_HASH_JOINS +

POST_THRESHOLD_HASH_GRPBYS +

POST_THRESHOLD_COL_VECTOR_CONSUMERS) AS THROTTLED_SORT_OPS,

SUBSTR(STMT_TEXT,1,255) AS STMT_TEXT

FROM TABLE(MON_GET_PKG_CACHE_STMT(NULL,NULL,NULL,-2))

SORT_SHRHEAP_TOP SORT_CONSUMER_SHRTHEAP_TOP ACTIVE_SORT_CONSUMERS_TOP … STMT_TEXT

---------------- -------------------------- ------------------------- ------------------------

262144 131072 4 WITH OPS AS (SELECT …

Sort usage + biggest individual
consumer + active consumers

Aggregate sort operators

Aggregate sort overflows / spills

Aggregate throttled sort operators

4 distinct sort consumers
in this query

Biggest single
operator

Total
memory
usage

Advanced Diagnostics Using

Runtime Explain and Section Actuals

Introducing Runtime Explain

• There may be cases when a more detailed analysis of query execution is required than
basic monitoring metrics such as time spent can provide

• In these cases the tool we typically turn to is the EXPLAIN feature of DB2 – which we
will refer to herein as the “SQL Compiler EXPLAIN”
• Compiles an input SQL statement and allows you to format and view the query plan
• Generally accurate approximation of the query you actually executed
• Possible differences due to compilation environment and/or table statistics from when your query

was compiled

• For this reason we introduced the ability to perform a “Runtime” EXPLAIN (explain
from section) which is generated directly from a compiled query plan in the engine.

• Allows you to generate plan output from the actual section you were executing

• Enables additional diagnostic features like section actuals and object metrics

Explain from Section Procedures

•Set of stored procedures provided that allow you generate an explain
from a runtime section
• EXPLAIN_FROM_CATALOG

• EXPLAIN_FROM_SECTION

• EXPLAIN_FROM_ACTIVITY

• EXPLAIN_FROM_DATA

•Explain table content can then be processed using the standard
explain tools (eg. db2exfmt)

•Output can be generated from any of the following sources:
• Static or dynamic statement entries in the package cache
• Any cache entry captured by the new package cache event monitor
• Static statement from the catalog tables
• Statement execution captured with section by the activity event monitor

Section Actuals + Object Metrics

• One key benefit of explain from section is the ability to capture and format
“section actuals” and “object metrics”
• All EXPLAIN output will contain cardinality estimates for individual operators in the plan
• Explains generated from captured activity data (EXPLAIN_FROM_ACTIVITY) will also contain actual

cardinalities and metrics per-data object within the query

• Examining this output gives you a detailed indication of what actually
happened during the query execution
• How closely actual cardinalities matched estimates
• What activity occurred on individual data objects

• In order to examine these metrics we will need to capture an execution of
our SQL statement of interest using the activity event monitor

Capturing Activities to Obtain Detailed Explain Metrics

• The activity event monitor in Db2 allows the capture of execution details for individual
SQL statements as well as several other recognized activities (eg. Load)

• It can be configured to capture a variety of different metrics as well as the section data
which includes actual cardinalities and object metrics

• Since the capture of individual activities is quite granular we offer a fair degree of
flexibility allowing the following data capture options:
• Capture data for all activities running in a particular WLM workload
• Capture data for all activities running in a particular WLM service class
• Capture data for activities that violate a particular WLM threshold

• We can also enable the capture of activities run by a specific application using the
WLM_SET_CONN_ENV procedure

• Our final example will demonstrate how to capture a statement of interest using the
activity event monitor and then obtain the detailed explain metrics

Step I: Prereq Setup Steps

create event monitor actEvmon for activities write to table

activity (table activity, in monitorTBS),

activityvals (table activityvals, in monitorTBS),

activitystmt (table activitystmt, in monitorTBS),

activitymetrics (table activitymetrics, in monitorTBS),

control (table control, in monitorTBS)

manualstart

Create the
activity event

monitor

call sysproc.sysinstallobjects(‘EXPLAIN’,’C’,null,null)

Create the
explain
tables…

Step II: Capturing the Activity Data

set event monitor actEvmon state 1

call wlm_set_conn_env(null,

'<collectactdata>WITH DETAILS,

SECTION</collectactdata>

<collectactpartition>ALL</collectactpartition>

<collectsectionactuals>BASE</collectsectionactuals>')

call wlm_set_conn_env(null,

'<collectactdata>NONE</collectactdata>

<collectsectionactuals>BASE</collectsectionactuals>')

set event monitor actEvmon state=0

Enable the
event monitor
and setup to
capture a

statement on
my connection

Disable
collection and

the event
monitoring once

I am done

select t1.ident, sum(t1.data) as data,

sum(t2.moredata) as moredata

from t1,t2

where t1.ident=t2.ident

group by t1.ident

Execute the
statement I’m
interested in

Step II: Another approach

set event monitor actEvmon state 1

update db cfg using section_actuals base

alter service class sysdefaultsubclass under

sysdefaultuserclass

collect activity data on all database partitions with

details,section

alter service class sysdefaultsubclass under

sysdefaultuserclass

collect activity data none

update db cfg using section_actuals none

set event monitor actEvmon state 0

Enable the
event monitor
on the default
subclass, and
collect details
and section

data

Disable the
event monitor

once I am done

(Queries of interest run and are
captured…)

Step III: Locating the activity of interest

select a.appl_id, a.uow_id, a.activity_id, a.appl_name,

s.executable_id, s.stmt_text

from activity as a,

activitystmt as s

where a.appl_id = s.appl_id and

a.uow_id = s.uow_id and

a.activity_id = s.activity_id and

s.stmt_text like 'select * from t1%'

Show me the
executions

captured for a
particular
statement

APPL_ID UOW_ID ACTIVITY_ID EXECUTABLE_ID STMT_TEXT APPL_NAME

------------------------- ------ ------------ --------------- -------------------------- ----------

*LOCAL.davek.100917004844 62 1 x'010000…1E00' select * from t1,t2 where… db2bp

Identifiers for the
activity

Step III: An alternate approach
select a.appl_id, a.uow_id, a.activity_id, a.appl_name,

m.total_cpu_time, s.executable_id, s.stmt_text

from

activity as a,

activitystmt as s,

activitymetrics as m

where a.appl_id = s.appl_id and

a.uow_id = s.uow_id and

a.activity_id = s.activity_id

and

a.appl_id = m.appl_id and

a.uow_id = m.uow_id and

a.activity_id = m.activity_id

order by total_cpu_time desc fetch first 5 rows only

Find the
captured

activities with
the largest
CPU time

APPL_ID UOW_ID ACTIVITY_ID APPL_NAME TOTAL_CPU_TIME EXECUTABLE_ID STMT_TEXT

------------------------- ------ ----------- --------- -------------- ------------- -------------------------

*LOCAL.davek.100917004844 62 1 db2bp 30500 x'0100…01E00' select t1.ident, sum(t1.d …

*LOCAL.davek.100917004844 64 1 db2bp 5360 x'0100…00900' CALL wlm_set_conn_env(?,? …

*LOCAL.davek.100917001050 105 1 db2bp 4603 x'0100…04A00' CALL wlm_set_conn_env(?,? …

*LOCAL.davek.100919015109 20 1 db2bp 444 x'0100…05000' SELECT TABNAME, TABSCHEMA …

*LOCAL.davek.100919015109 25 1 db2bp 406 x'0100…05000' SELECT TABNAME, TABSCHEMA …

Statement
executable id

Identifiers for the
activity

Step III: Notes on MPP and PureScale

• In MPP, statement execution is distributed across multiple partitions
• Activity data must be collected on all partitions to capture the work done by the

query

• Each partition involved in the query will generate an activity record and section

actuals corresponding to that partition’s contribution

• The explain process will amalgamate information across partitions automatically

• In PureScale statement execution is local to a particular member
• Only the coordinator member will execute the query plan and generate section

actuals

• Note that the statement execution may still involve contention on global resources

that are being contended for by other members

Step IV: Performing and Formatting the
Explain from Section

call explain_from_activity(‘*LOCAL.davek.100715194643’,

85,1, ’ACTEVMON’, null,

?,?,?,?,?)

Perform an
explain on
the activity
of interest…

db2exfmt -d sample -w -1 -n %% -# 0 -s %% -o explain.txt

Now format the
most recent data

in the explain
tables to a

readable text file

Identifiers for
the activity

Step V: Examining the Explain Output
(Cardinalities)

Access Plan:

Total Cost: 30.8779
Query Degree: 1

Rows
Rows Actual
RETURN
(1)
Cost
I/O
|
6
30

GRPBY
(2)
30.8423

NA
|

|

16

90

HSJOIN

(3)

30.7964

NA

/-----+------\

60 2.66667

50 NA

TBSCAN FILTER

(4) (7)

9.4529 2.69976

NA NA

| |

60 16

50 16

SORT IXSCAN

(5) (8)

9.40141 2.69976

NA NA

| |

Estimated Cardinality
(vs)

Actual Cardinality

| |

60 16

50 16

SORT IXSCAN

(5) (8)

9.40141 2.69976

NA NA

| |

60 -1

60 NA

TBSCAN INDEX: DAVEK

(6) IDX1

9.27088 Q2

NA

|

60

NA

TABLE: DAVEK

T2

Q1

Step V: Examining the Explain Output (Object Metrics)
Runtime statistics for objects used in Access Plan:

Schema: DAVEK

Name: IDX1

Type: Index

Metrics

object_index_l_reads:5

object_index_lbp_pages_found:5

object_index_gbp_indep_pages_found_in_lbp:5

Schema: DAVEK

Name: T2

Type: Table

Metrics

rows_reads:60

object_data_l_reads:10

object_data_lbp_pages_found:10

object_data_gbp_indep_pages_found_in_lbp:10

Index Object

Table activity + I/O
metrics

Table Object

Index I/O metrics

Per-object metrics available through EXPLAIN

• Tables
• Rows inserted / updated / deleted / read

• Overflow creates / accesses

• Lock wait time + lock escalations

• Direct reads / writes

• Bufferpool metrics for data, xda, columnar storage

• Indexes
• Bufferpool metrics for index storage

Questions?

DB2 Monitoring Resources

• Tuning and Monitoring Database System Performance
• https://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wi

ki/0fc2f498-7b3e-4285-8881-2b6c0490ceb9/page/24f2e298-60e3-4a19-8da8-

0d92b775ed66/attachment/2a8df9be-3958-47b1-b92c-

11d66745176e/media/DB2BP_System_Performance_0813.pdf

• DB2 Monitoring Enhancements for BLU Acceleration
• http://www.ibm.com/developerworks/data/library/techarticle/dm-1407monitor-

bluaccel/index.html

48

Session code:

Please fill out your session

evaluation before leaving!

David Kalmuk

IBM

dckalmuk@ca.ibm.com

D04

49

Please fill out your session

evaluation before leaving!

