
IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Session code:

Db2 Architecture.
Overview and BLU

Keri Romanufa

IBM
TRIDEX

06/13/2019 2:30 Db2

1

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Please note:

• IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice
and at IBM’s sole discretion.

• Information regarding potential future products is intended to outline our general product direction and it should
not be relied on in making a purchasing decision.

• The information mentioned regarding potential future products is not a commitment, promise, or legal obligation
to deliver any material, code or functionality. Information about potential future products may not be
incorporated into any contract.

• The development, release, and timing of any future features or functionality described for our products remains
at our sole discretion.

• Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending upon many
factors, including considerations such as the amount of multiprogramming in the user’s job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that
an individual user will achieve results similar to those stated here.

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Notices and disclaimers
•© 2019 International Business Machines Corporation. No part of this
document may be reproduced or transmitted in any form without
written permission from IBM.

•U.S. Government Users Restricted Rights — use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM.

•Information in these presentations (including information relating to
products that have not yet been announced by IBM) has been reviewed for
accuracy as of the date of initial publication and could include unintentional
technical or typographical errors. IBM shall have no responsibility to update
this information. This document is distributed “as is” without any warranty,
either express or implied. In no event, shall IBM be liable for any damage
arising from the use of this information, including but not limited to, loss of
data, business interruption, loss of profit or loss of opportunity.
IBM products and services are warranted per the terms and conditions of the
agreements under which they are provided.

•IBM products are manufactured from new parts or new and used parts.
In some cases, a product may not be new and may have been previously
installed. Regardless, our warranty terms apply.”

•Any statements regarding IBM's future direction, intent or product plans
are subject to change or withdrawal without notice.

•Performance data contained herein was generally obtained in a controlled,
isolated environments. Customer examples are presented as illustrations of
how those customers have used IBM products and the results they may have
achieved. Actual performance, cost, savings or other results in other
operating environments may vary.

•References in this document to IBM products, programs, or services does
not imply that IBM intends to make such products, programs or services
available in all countries in which IBM operates or does business.

•Workshops, sessions and associated materials may have been prepared by
independent session speakers, and do not necessarily reflect the views of
IBM. All materials and discussions are provided for informational purposes
only, and are neither intended to, nor shall constitute legal or other guidance
or advice to any individual participant or their specific situation.

•It is the customer’s responsibility to insure its own compliance with legal
requirements and to obtain advice of competent legal counsel as to
the identification and interpretation of any relevant laws and regulatory
requirements that may affect the customer’s business and any actions the
customer may need to take to comply with such laws. IBM does not provide
legal advice or represent or warrant that its services or products will ensure
that the customer follows any law.

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

AGENDA

Overview :

BLU:

• Architecture Overview

• Basic Operation Walkthroughs (Row and Columnar)

• What is Db2 with BLU Acceleration?

• Working with Databases and Column-Organized Tables

• BLU Query Processing

• Columnar Compression and Storage

• What’s new in v11.5 and beyond?

• Best practices, Tips, and Tricks

Note: Some “bonus” material on the row organized

table layout (and indexes too) is included

after the last main slide!

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Architecture
Overview

I/O Subsystem
Asynchronous, Parallel I/O

Automatic, Intelligent Data

Striping with Parallel I/O

Big block I/O

Scatter/Gather I/O

Parallelism
SQL and Utilities

Intra- & Intra-Partition Parallelism

Cost-based Optimizer with Query

Rewrite

Very Large Memory Exploitation
64 bit Support

I/O Buffering

Multiple Buffer Pools

Multi-core Exploitation
All cores exploited through

Operating System threads

Clients

core

Db2 Server

core

core

core

core

core

core

core

Parallel
Subagents

Coordinator
Agent

Log Buffer Buffer Pools

Log
Writer,
Reader

Prefetchers
Page

Cleaners

Package
Cache

Lock
List

Tablespace ContainersLog Disks 5

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Database Partitioning Feature

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Partitions are Logical
❑ Any number of partitions can be created on

a single physical machine (works

extremely well with NUMA architectures)
Shared Nothing Architecture Allows

Virtually Unlimited Scalability
❑ Each partition owns it's resources (buffer pool, locks, disks,...)

❑ Avoids common limits on scalability:
❑No need for distributed lock manager or buffer coherence protocols

❑No need to attach disks to multiple machines

❑ Partitions Communicate Only Necessary Tuples
❑Using shared memory (same machine)

❑Using high speed comm (diff. machines)
Clients

...

Applications See Single Database View

Partition 1

Virtually Everything Runs in

Parallel Across Nodes
❑ SQL: queries, inserts, updates, deletes

❑ Utilities: Backup, Restore, Load, Index Create, Reorg

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Partition 2 Partition N

Near Linear Scaling
For Warehousing

6

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Cluster Caching Facility (CF)
❑ Provides a global lock manager (GLM)

❑ Provides another level of buffer pool (GBP)

above disk

❑ Redundant CFs kept in-sync with each other

through duplexing

Shared Data Architecture
❑ Members have equal access to database storage

❑ Clients connect to any member and get completely

coherent data access

❑ Members co-operate with each other and the CF to

keep data concurrent data access coherent

❑ Per-member logs Clients

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

...
CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

GBP

GLM

GBP

GLM

Primary and Secondary CF

Shared Data

High Speed

Interconnect

Applications See Single Database View

GBP

GLM

GBP

GLM

Near Continuous
Availability

for OLTP

Architecture Overview : pureScale

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Clients

CPU
Db2 Server

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Parallel
Subagents

Coordinator
Agent

Log Buffers Buffer Pools

Logger Prefetchers

Page
Cleaners

Package
Cache

Lock
List

SELECT C1 FROM T1 WHERE C2=‘5’

1. SQL statement sent over network to coordinator agent

2. SQL statement compiled and optimized

3. Resulting access plan stored in shared access plan

cache

4. Access plan execution begins; subagents perform

parallel table scan

5. Periodic async prefetch requests sent to prefetchers

(aka ‘io servers’)

6. Prefetchers asynchronously drive parallel I/O against

tablespace containers to bring

in extents from disk into separate pages in bufferpool

7. Entire rows read out of buffer pool and

decompressed. C2 values compared to ‘5’. Matching

C1 values added to result set.

8. Result set sent back to client.

2
3

6

7

1 8

Row Organized Query Processing

7
7

5

4

extent extent
8

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

SELECT C1 FROM T1 WHERE C2=‘5’

1. Access plan execution begins; subagents kicked off to

perform parallel scan of column C2

2. Periodic prefetch requests sent to prefetchers (aka ‘io

servers’)

3. Prefetchers asynchronously drive parallel I/O against

tablespace containers to bring requested pages

containing only C2 values from disk into separate

pages in bufferpool (*)

4. Batch of C2 values is read out of buffer pool and

compared to ‘5’ (data remains compressed - “active”

compression), forming a batch of qualifying tuple

sequence numbers (TSNs)

5. The C1 values corresponding to the batch of qualifying

TSNs are prefetched

6. Qualifying C1 values added to result set,…

7. and sent to client

… Initial steps skipped …BLU

Clients

CPU
Db2 Server

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Parallel
Subagents

Coordinator
Agent

Log Buffers Buffer Pools

Logger Prefetchers

Page
Cleaners

Package
Cache

Lock
List

5

4

7

4
4

2

1

(*) Synopsis filtering not shown here; More on this later.

3

6 6

Columnar

Storage

Each extent contains

values for 1 column

C1
C3 C4

C2 C1
C3 C4

C2 C1
C3 C4

C2

Column Organized Query Processing

9

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

10

▪ With BLU, each page and extent contains values for a single column

TSN

0

1

2

3

4

5

6

7

8

9

…

TSN =

Tuple

Sequence

Number

Mike Hernandez

Chou Zhang

Carol Whitehead

Whitney Samuels

Ernesto Fry

Rick Washington

Pamela Funk

Sam Gerstner

Susan Nakagawa

John Piconne

Mike Hernandez

Chou Zhang

Carol Whitehead

Whitney Samuels

Ernesto Fry

Rick Washington

Pamela Funk

Sam Gerstner

Susan Nakagawa

John Piconne

43

22

61

80

35

78

29

55

32

47

43

22

61

80

35

78

29

55

32

47

404 EscuelaSt.

300 Grand Ave

1114 Apple Lane

14 California Blvd.

8883 Longhorn Dr.

5661 Bloom St.

166 Elk Road #47

911 Elm St.

455 N. 1st St.

18 Main Street

404 EscuelaSt.

300 Grand Ave

1114 Apple Lane

14 California Blvd.

8883 Longhorn Dr.

5661 Bloom St.

166 Elk Road #47

911 Elm St.

455 N. 1st St.

18 Main Street

CA

CA

CA

CA

AZ

NC

OR

OH

CA

MA

CA

CA

CA

CA

AZ

NC

OR

OH

CA

MA

90033

90047

95014

91117

85701

27605

97075

43601

95113

01111

90033

90047

95014

91117

85701

27605

97075

43601

95113

01111

Los Angeles

Los Angeles

Cupertino

Pasadena

Tucson

Raleigh

Beaverton

Toledo

San Jose

Springfield

Los Angeles

Los Angeles

Cupertino

Pasadena

Tucson

Raleigh

Beaverton

Toledo

San Jose

Springfield

Page

Extent
(assume

extentsize=2)

TSNs (a logical Row ID) are used to stitch together column values that belong in the same row during query processing
▪ eg. SELECT zipcode FROM t WHERE name=“Mike Hernandez”

▪ an internal ‘page map index’ allows Db2 to quickly find the page containing the zipcode for TSN 4

Typically, column-organized tables use significantly less space than row-organized tables

▪ Unusual case: column-organized tables with many columns and very few rows can be larger than row-organized tables as each column requires at least 1 extent

▪ With traditional tables, each page contains entire rows

BLU

Deeper Look at Internals : Column Storage

10

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Clients

CPU
Db2 Server

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Parallel
Subagents

Coordinator
Agent

Log Buffers Buffer Pools

Logger Prefetchers

Page
Cleaners

Package
Cache

Lock
List

INSERT INTO T1 (…)

1. SQL statement sent over network to coordinator agent

2. SQL statement compiled and optimized

3. Resulting access plan stored in shared access plan cache

4. Access plan execution begins

5. Agent searches for a page in the table large enough for

row

6. Page found, and read into buffer pool

7. Agent acquires X lock on row

8. Agent writes log record to log buffer in memory (describes

how to redo and undo the upcoming insert)

9. Agent inserts record to page in buffer pool (“dirties” page)

10. Success sent to client

2 4
3 5

9

D

1 10

6

D

8 7

Row Organized INSERT Processing

11

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

INSERT INTO T1 (…)

1. SQL statement sent over

network to coordinator agent

2. SQL statement compiled and

optimized

3. Resulting access plan stored in shared access plan cache

4. Access plan execution begins

5. For each column, agent finds a page large enough for the

column value (BLU uses an append approach for this)

6. Pages found, and read into buffer pool

7. Agent acquires X lock on logical row (aka TSN)

8. For each column, agent writes log record to log buffer in

memory (describes how to redo and undo per column)

9. Agent inserts column values to pages in buffer pool (“dirties”

pages)

10. Success sent to client

Clients

CPU
Db2 Server

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Parallel
Subagents

Coordinator
Agent

Log Buffers Buffer Pools

Logger Prefetchers

Page
Cleaners

Package
Cache

Lock
List

2 4
3 5

9

1 10

6
8 7

C1
C3 C4

C2

Columnar

Storage

Each extent contains

values for 1 column (*) Synopsis maintenance not shown here; More on this later.

D
D

D
D

BLU
BLU

Column Organized INSERT Processing

12

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Db2 tries to do expensive operations like I/Os in batches and in the background as much
as possible. Why? To optimize:

 Overall system throughput

 Individual statement response time

In this case, the inserting transaction is not yet committed
 So, there’s no fundamental need to write the inserted row to disk

 Other transactions will retrieve the latest value from the buffer pool

 And, if the system crashes, the database must show the insert transaction as having not occurred

When should DB2 write the following to disk ?
 The log record in the log buffer ?

 The dirty data page with the new row in the buffer pool ?

Nothing Written to Disk during the Insert ??

13

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Clients

CPU
Db2 Server

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Parallel
Subagents

Coordinator
Agent

Log Buffers Buffer Pools

Logger Prefetchers

Page
Cleaners

Package
Cache

Lock
List

1. COMMIT SQL statement sent over network to

coordinator agent

2. Agent writes commit log record to log buffer

3. Agent waits for logger to write log buffer (up to

and including the commit log record) to disk (if

not already done)

4. Logger “gets around” to writing needed log

buffers to log disk (at this point, the transaction

is durable)

5. Logger posts all agents that are waiting for

‘hardening’ of the log records just written to the

log disk

6. Lock released

7. Success sent to client

3

D

1 7

2

5 4

6

COMMIT Processing

14

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

When does it get written to disk ?

What happens if power is lost right now ?

 Will the committed insert be lost ?

 How is it recovered ?

What About the Dirty Data Page ?

15

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Clients

CPU
Db2 Server

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Log Buffers Buffer Pools

Logger Prefetchers

Page
Cleaners

Package
Cache

Lock
List

1. Client tries to CONNECT, RESTART or

ACTIVATE the database

2. Agent realizes database is in inconsistent state

so initiates crash recovery

3. Log reader reads “active” log records into the

log buffer

4. Subagents “redo” log records in parallel

5. For each log record, read target page into buffer

pool, and,…

6. … redo the action specified in the log record (if

it’s not already reflected in the page)

7. After redo phase, the “undo” phase will undo

any actions done for transactions that did not

commit before the system crash

8. When redo and undo complete, the database is

open for other clients, and success is returned

1

2

3

8

4

7

5

6

D

Crash Recovery

16

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

When does it get written to disk ?

OK, But What About That Dirty Data Page ?

17

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Clients

CPU
Db2 Server

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Parallel
Subagents

Coordinator
Agent

Log Buffers Buffer Pools

Logger Prefetchers

Page
Cleaners

Package
Cache

Lock
List

The buffer pool is full

of dirty pages.

What happens when

an agent tries to insert

to (yet) another page ?

INSERT

D

DELETE

D

UPDATE

D

INSERT

D

D D D D D D D D D D D
D D D D D D D D D D D
D D D D D D D D D D D

Imagine Multiple Clients INSERTing (or U/D)

18

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Clients

CPU
Db2 Server

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Parallel
Subagents

Coordinator
Agent

Log Buffers Buffer Pools

Logger Prefetchers

Page
Cleaners

Package
Cache

Lock
List

1. INSERT SQL statement sent over network to coord

agent

2. (Skip SQL compilation, optimiz’n, access plan mgt,

etc)

3. Agent finds a page with enough space, and tries to

read it into the buffer pool

4. Buffer pool manager chooses a ‘victim’ page. It tries

to choose a clean LRU page using ‘clock’ algorithm.

If can’t find a clean page, will choose dirty victim - a

‘dirty steal’.

5. Dirty victim must be written to disk. However, before

that can be done, associated log record must be

written to log disk (Why?). Note, this policy is called

“WAL” (or “write ahead logging”). 5a: logger posts

interested agents.

6. Now agent writes dirty victim page to disk.

7. Now (finally) target page can be read into buffer pool

and updated.

1

2 3

D D D D D D D D D D D
D D D D D D D D D D D
D D D D D D D D D D D

4

55a

6

“WAL” &

“Dirty

Steals”

7

Next INSERT

19

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Clients

CPU
Db2 Server

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Parallel
Subagents

Coordinator
Agent

Log Buffers Buffer Pools

Logger Prefetchers

Page
Cleaners

Package
Cache

Lock
List

Write dirty pages to disk

in the background.

Why ??

… Performance

• Insert/Update/Deletes don’t wait

• More efficient batch I/O

• Avoid Dirty Steals

INSERT

D

DELETE

D

UPDATE

D

INSERT

D

D D D D D D D D D D
D D D D D D D D D D
D D D D D D D D D D DD

Page Cleaners

20

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

AGENDA

Overview :

BLU (columnar):

• Architecture Overview

• Basic Operation Walkthroughs (Row and Columnar)

• What is Db2 with BLU Acceleration?

• Working with Databases and Column-Organized Tables

• BLU Query Processing

• Columnar Compression and Storage

• What’s new in v11.5 and beyond?

• Best practices, Tips, and Tricks

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

What is Db2 with BLU Acceleration?
Next generation database for analytics

• Performance improvements
• Storage savings
• Simplicity

Seamlessly integrated
• Built directly into Db2
• Consistent SQL, language interfaces, administration

Hardware Optimized
• Memory, CPU, and I/O optimized

Available in Db2 on-prem, Db2W, Db2WoC, and IIAS
22

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Super Fast: Query Speed-up Examples

• Significant speed-up for many
warehouse workloads

• Identical hardware vs.
traditional row-based analytic
database technology

• Some queries 1000+x faster

23

Speed-Up

0 10 20 30 40 50 60 70 80

Finance

Food

Telcom

BI ISV

Investment Banking

Insurance

BI ISV

Consulting

Medical

Travel & Entertainment

Transportation

Technology

Average

37x

Across

Various

Analytics

Workloads

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Super Small: 10x Storage Reduction Common

• 10x or more compression
commonly reported

• A further 2x-3x storage
reduction vs. Db2’s previous
industry-leading adaptive
compression

24

DB2 with BLU Accel.DB2 with BLU Accel.

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Super Easy

25

Database Design and Tuning

1. Decide on partition strategies
2. Select Compression Strategy
3. Create Table
4. Load data
5. Create Auxiliary Performance

Structures
• Materialized views
• Create indexes

• B+ indexes
• Bitmap indexes

6. Tune memory
7. Tune I/O
8. Add Optimizer hints
9. Statistics collection

DB2 with BLU Acceleration

1. Create Table
2. Load data

Repeat

VS

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Will your Workload Benefit from BLU Acceleration?

26

Probably:

• Analytical workloads,
data marts, etc.

• Grouping, aggregation, range
scans, joins

• Queries touch only a subset of
the columns in a table

• Star Schema

• SAP Business Warehouse

• Netezza migration

Probably not:

• OLTP

• Insert, Update, Delete of few rows

per transaction*

• Queries touch many or all

columns in a table

• Use of XML, pureScale, etc. which

are not supported in BLU yet

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Db2 BLU Core Concepts

27

IBM Research & Development Lab Innovations

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Creating a Database for BLU Acceleration

• Step 1: Set DB2_WORKLOAD registry variable for optimal
configuration defaults
db2set DB2_WORKLOAD=ANALYTICS
• This setting is used by AUTOCONFIGURE to influence default configuration and

optimize for BLU Acceleration analytic workloads
• Don’t disable AUTOCONFIGURE

• Step 2: Create your database
• Refer to Notes for an example plus important extra settings.

28

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Optimizing an Existing Database for BLU Acceleration

• Step 1: Set DB2_WORKLOAD registry variable for optimal
configuration defaults
db2set DB2_WORKLOAD=ANALYTICS

• Step 2: Run AUTOCONFIGURE to get most of the recommended
settings

29

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

DB2_WORKLOAD=ANALYTICS Sets Everything You Need

dft_table_org = COLUMN

default page size for new DB is 32K, dft_extent_sz = 4

dft_degree = ANY, intra-query parallelism is enabled

catalogcache_sz – higher value than default

sortheap and sheapthres_shr – higher value than default

util_heap_sz – higher value than default

WLM controls concurrency on SYSDEFAULTMANAGEDSUBCLASS

Automatic table maintenance and auto_reorg = ON

* And more! 30

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Creating a Column-Organized Table

• If dft_table_org = COLUMN
• ORGANIZE BY COLUMN is the default and can be omitted
• Use ORGANIZE BY ROW to create row-organized tables

31

CREATE TABLE sales_col (

c1 INTEGER NOT NULL,

c2 INTEGER,

. . .

PRIMARY KEY (c1)) ORGANIZE BY COLUMN;

Columnar tables are
always compressed
by default.

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Columnar Storage in Db2 (Conceptual)

• Separate set of extents and
pages for each column

• Typically, column-organized
tables use less space than row-
organized tables

32

Mike Hernandez

Chou Zhang

Carol Whitehead

Whitney Samuels

Ernesto Fry

Rick Washington

Pamela Funk

Sam Gerstner

Susan Nakagawa

John Piconne

Mike Hernandez

Chou Zhang

Carol Whitehead

Whitney Samuels

Ernesto Fry

Rick Washington

Pamela Funk

Sam Gerstner

Susan Nakagawa

John Piconne

43

22

61

80

35

78

29

55

32

47

43

22

61

80

35

78

29

55

32

47

404 Escuela St.

300 Grand Ave

1114 Apple Lane

14 California Blvd.

8883 Longhorn Dr.

5661 Bloom St.

166 Elk Road #47

911 Elm St.

455 N. 1st St.

18 Main Street

404 Escuela St.

300 Grand Ave

1114 Apple Lane

14 California Blvd.

8883 Longhorn Dr.

5661 Bloom St.

166 Elk Road #47

911 Elm St.

455 N. 1st St.

18 Main Street

CA

CA

CA

CA

AZ

NC

OR

OH

CA

MA

CA

CA

CA

CA

AZ

NC

OR

OH

CA

MA

90033

90047

95014

91117

85701

27605

97075

43601

95113

01111

90033

90047

95014

91117

85701

27605

97075

43601

95113

01111

Los Angeles

Los Angeles

Cupertino

Pasadena

Tucson

Raleigh

Beaverton

Toledo

San Jose

Springfield

Los Angeles

Los Angeles

Cupertino

Pasadena

Tucson

Raleigh

Beaverton

Toledo

San Jose

Springfield

TSN

0

1

2

3

4

5

6

7

8

9

10

11

…

TSN = Tuple

Sequence

Number
page

page

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

What You See in the Db2 Catalog: TABLEORG

• Which tables are column-organized?
• New column in syscat.tables: TABLEORG

33

SELECT tabname, tableorg, compression

FROM syscat.tables

WHERE tabname like 'SALES%';

TABNAME TABLEORG COMPRESSION

------------------------------- -------- -----------

SALES_COL C

SALES_ROW R N

2 record(s) selected.

For column-organized

tables, COMPRESSION is

always blank because you

cannot enable/disable

compression.

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Synopsis Table - data skipping

• Meta-data that describes which ranges of
values exist in which parts of the user table

• Enables Db2 to skip portions of a table during
query processing

• Benefits from data clustering

34

S_DATE QTY ...

2005-03-01 176 ...

2005-03-02 85 ...

2005-03-02 267

2005-03-04 231

...

...

...

...

User table: SALES_COL

SYN130330165216275152_SALES_COL

TSNMIN TSNMAX S_DATEMIN S_DATEMAX ...

0 1023 2005-03-01 2006-10-17 ...

1024 2047 2006-08-25 2007-09-15 ...

...

0

1023

1024

2047

0

1023

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

What You See in the Db2 Catalog: Synopsis Tables

• For each column-organized table there is a corresponding
synopsis table, automatically created and maintained.

35

SELECT tabschema, tabname, tableorg

FROM syscat.tables

WHERE tableorg = 'C';

TABSCHEMA TABNAME TABLEORG

--------------- ---------------------------------- --------

CDREXELI SALES_COL C

SYSIBM SYN130330165216275152_SALES_COL C

2 record(s) selected.

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

What You See in the Db2 Catalog: Page Map Index

• Automatically created and maintained.

• Used internally to locate column data in storage object.

• Maps columns and TSNs to data pages.

36

SELECT indschema, indname, colnames, indextype

FROM syscat.indexes

WHERE tabname = 'SALES_COL';

INDSCHEMA INDNAME COLNAMES INDEXTYPE

---------- ------------------- ------------------ ---------

SYSIBM SQL130330165215840 +ID REG

SYSIBM SQL130330165216790 +COLGID+STARTTSN CPMA

2 record(s) selected.

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

BLU Query Runtime Execution Flow

• Evaluator chains contain specific evaluators for different operations

• Multiple DB sub-agents execute cloned evaluator chains in parallel
• Threading degree determined by the optimizer

• Straw model to distribute TSN ranges

37

E1 E2 E3

E1 E2 E3

E1 E2 E3

…

T0

T1

Tn

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

BLU Query Processing Order

• Synopsis scan to skip tuples

• Predicates on compressed data

• Join and group-by

• Apply after decoding
• Complex expressions, arithmetic, aggregations

38

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

BLU Query Optimization

•Late materialization
• Columns are retrieved as late as possible depending on predicate filtering
• Occurs for TBSCANs and probe side of HSJOINs

• e.g. SELECT C1, C2, C3 FROM T1 WHERE C1=5 AND C2=10
• SCAN C1, apply C1=5, return row-ids
• SCAN C2, using row IDs from 1), apply C2=10, return row IDs
• SCAN C3, using row IDs from 2), return values

• Determined dynamically by BLU runtime
• Accounted for in the optimizer’s cost model

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Late materialization

• For HSJOIN probe side:
• Retrieve columns needed for join just before the join
• Retrieve columns not required for predicate application, after all joins have been

performed

select
c.first_name,
c.last_name,
ds.sales_price

from
customer c,

date d,
daily_sales ds

where
ds.perkey = d.perkey and
ds.custkey = c.custkey and
d.year = 2015

JOIN

SCAN

SCAN

JOIN

SCAN

Customer

Daily Sales

Date

DS.PERKEY = D.PERKEY

DS.CUSTKEY = C.CUSTKEY

LOAD DS.CUSTKEY

LOAD DS.PERKEY

LOAD DS.SALES_PRICE

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Actionable compression allows the following actions to be performed
on compressed data

• Predicate evaluation (=, <, >, >=, <=, Between, LIKE)
• Group-by and Join processing on encoded data use global and On-The-Fly (OTF)

encoding

Order-preserving encoding allows range predicates to be evaluated on
compressed data

• Avoiding decompression provides significant query performance gains

43

Actionable Compression 2/2

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Compression Dictionaries for Column-Organized Tables

• Column-level dictionaries: Always one per column
• Dictionary created during load replace, load insert, SQL insert/update

• Page-level dictionaries: May also be created during load or insert
• Used if space savings outweighs cost of storing page-level dictionaries
• Exploit local data clustering at page level

44

Data Page

Page Dictionary

Column 1 Data

Column N

Compression

Dictionary

Column 1

Compression

Dictionary

. . .

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Columnar Compression 1 /2

Frequency (pure dictionary) encoding
• Most common values use fewest bits

Multiple compression techniques:
• Approximate Huffman-encoding
• Prefix encoding
• Offset encoding

45

0 = California

1 = New York

000 = Arizona

001 = Colorado

010 = Kentucky

011 = Illinois

…

111 = Washington

000000 = Alabama

000001 = Alaska

…

2 High Frequency States

(1 bit covers 2 entries)

8 Medium Frequency States

(3 bits cover 8 entries)

40 Low Frequency States

(6 bits cover 64 entries)

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Columnar Compression 2/2

Prefix encoding
• Similar to approximate Huffman-encoding for common prefixes
• Prefix bits for encoded prefixes concatenated with uncompressed suffix bits
• Example values: MAR01, MAR02, JUN10, JUN15, etc.
• 4 prefix bits, 16 suffix bits

Offset (or minus) encoding
• Dictionary includes base value and number of bits that define range of coverage
• Example: Base value 0 and 10 offset bits (0-1023) , dates
• May include extended partition to provide some prediction for future values

46

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Pure Dictionary Coding

Code = dictionary index alone with no offset bits

Set of base dictionary values with cardinality = 2 ** 3 => 8 possible dictionary values

In this example, 4 of the 8 possible dictionary values are shown

Dictionary Index Dictionary Values

0 = ‘000’b Arizona

1 = ‘001’b California

2 = ‘010’b Florida

3 = ‘011’b Hawaii

Dictionary

Encoded Value in Binary DictionaryIndex Offset Decoded Value

011 3 = ‘011’b 0 011 >> 0 = 011

Decode (011) = dictValues[011] + 0

=> Hawaii

NumDictBits = 3

NumOffsetBits = 0

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Column-Level Dictionaries are Static

• Once created, evolved column-level dictionaries are static

• Compression ratio may deteriorate if newly-inserted values are not
covered by the column-level dictionary
• Page compression can reduce need to rebuild column dictionaries

• New offset encodeable values not covered by column-level dictionaries can
still be compressed by page-level dictionaries 50

Update Column-Level

Dictionaries

Page

Compression

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

FUTURE: Improved Compression of String Datatypes

• Frequency-based compression
difficult for some string datasets

• String data dominates storage cost

• Add another level of pattern-based
page compression

51

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Load for Column Organized Tables

Pass 1 ANALYZE PHASE

Only if dictionaries need to be built

Build

histograms

to track

value

frequency

Build column

compression

dictionaries

Compress values.

Build data pages.

Update synopsis Build

keys for page map

index and any unique

indexes.

User Table

Synopsis Table

Convert raw data

from row-organized

format to column-

organized format

Convert raw data

from row-organized

format to column-

organized format

Pass 2 LOAD PHASE

Input

Source

Input

Source

Index keys

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Maximizing Compression with the Load Utility

• Use sufficiently large amount of representative data in 1st Load that
builds dictionaries

• Set util_heap_sz >= 1,000,000 pages with AUTOMATIC option

• Consider pre-sorting the input data by columns that are commonly
referenced by predicates that filter the fact table or are often joined
with dimension tables.

• To minimize amount of time table is offline and create a near-optimal
dictionary
• Step 1: Manually build dictionary using load utility and Bernoulli sampling
• Step 2: Insert data

• Refer to Notes for an example
53

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

New in v11.5: External Tables

• Query data in external files (such as CSV text files) as though it were
database data

• Load from external files through this interface

• New data parser – proven to parse > 16TB/hour

54

Example creating and querying an external table
create external table ext_orders(order_num INT, order_dt TIMESTAMP)

USING(dataobject('/tmp/order.tbl') DELIMITER '|');

select COUNT(*) from ext_orders;

Example loading data from an external table
insert into orders select * from ext_orders;

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

New in v11.5: Insert/Update/Delete Performance
Enhancements

• Db2 11.5 greatly expands core-friendly parallelism for SQL-based IUD
operations on columnar tables
• KIWI: Kill It With Iron
• Maximize CPU cache, cache-line efficiency

• Critical to maximize ETL/ELT batch performance

• Many general improvements, but primary focus on bulk operations
• See Notes for examples

55

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Parallel Insert/Update/Delete

• BLU query processing leverages
core-friendly parallelism
• Excellent scalability for large SMPs
• Combine SMP and MPP scaleout

• BLU bulk IUD now provides
similar parallelism
• Parallel insert available in v11.1.1.2

• INSERT INTO table2 SELECT *
FROM table1

56

Subagent

Subagent

Subagent

Subagent

Subagent

56

Subagent

Subagent

Subagent

Subagent

Subagent

Subagent

Subagent

Subagent

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

New in v11.5: Vectorized Insert/Update 1/2

• BLU query processing leverages vectors of columnar tuplets
• Enables bulk processing on columns instead of row by row
• Maximizes cache and cacheline efficiency

• Bulk insert/update operations benefit from similar access pattern

57

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

New in v11.5: Vectorized Insert/Update 2/2

58

Pre-v11.5 approach v11.5 approach

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

ETL Performance Example

• Data ingest rate
• 1 TB/hour before enhancements
• Now ~5 TB/hour (IIAS)

• >10 TB data

• Table remains online

• Combined features
• v11.5 -> ET load
• v11.1 -> Parallel insert
• v11.5 -> Vectorized insert
• V11.5 -> Optimized bulk insert code path
• Future -> reduced logging

59

Parallel Insert Degree/Time/Speedup

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Automatic Dictionary Creation (ADC) during SQL Insert

• Initial data inserted before ADC is uncompressed

• Once ADC threshold is reached, ADC builds evolved dictionary

• 3 types of ADC: Vectorized, Synchronous, and Asynchronous
60

Insert Data
Threshold triggers ADC Evolved

Dictionary

Default

Dictionary
Insert Data Uncompressed

data

Evolved

Dictionary
Insert Data

Compressed data

added to existing

uncompressed data

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

New in v11.5: Vectorized ADC

• Optimized for bulk insert

• Executes within insert threads,
even across streams

• Maximizes cache and cacheline
efficiency

• Once dictionary build starts,
delay insert threads.

61

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Maximizing Compression with SQL Insert

• Bulk insert to empty table creates high-quality column-level
dictionaries while minimizing time to creation
• Should include sufficient number of rows to reach ADC threshold
• Leverages vectorized ADC

62

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

New in v11.5: Automatic REORG Recompress

• ADC threshold is set higher to build a better dictionary

• Large number of values at the front of the table left uncompressed

• REORG Recompress automatically uses evolved dictionary to
recompress committed data previously encoded using default dictionary

• Frees full extents, but does not deallocate them 64

C
O

M
P

R
E

S
S

E
DADC triggered

here

C
O

M
P

R
E

S
S

E
D

U
N

C
O

M
P

R
E

S
S

E
D

C
O

M
P

R
E

S
S

E
D

Free extents

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Automatic Space Reclamation

After automatic REORG Recompress frees extents, a subsequent REORG
TABLE…RECLAIM EXTENTS may return pages in freed extents to tablespace
storage

These reclaimed pages may be reused by any tables in same tablespace

auto_reorg database configuration parameter controls if auto reclamation
takes place

• Set to ON if DB2_WORKLOAD=ANALYTICS

65

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Reducing Unused Space in a Tablespace

Once extents are reclaimed, they are available for reuse within the
same tablespace

However, this unused space can also be released for other consumers
• A sample query to detect unused space is provided in the Notes

To release all unused space and lower the high water mark:
ALTER TABLESPACE <TBSPACE NAME> REDUCE MAX

66

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Measuring Compression 1/2

• Statistics for Measuring Number of Pages in SYSCAT.TABLES
• NPAGES: Number of pages in Column-Organized Object minus any empty pages
• FPAGES: Total number of pages in both objects
• MPAGES: (M for meta data) Number of pages in Data Object

• ADMIN_GET_TAB_INFO table function reports
• COL_OBJECT_P_SIZE: Physical size (KB) of column data object containing user

data
• DATA_OBJECT_P_SIZE: Physical size (KB) of data object containing meta data

67

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Measuring Compression 2/2

68

C
O

L
_
O

B
J
E

C
T

_
P

_
S

IZ
E

D
A

T
A

_
O

B
J
E

C
T

_
P

_
S

IZ
E

User Data

Empty Pages if exist

Meta Data

(Dictionaries)

FPAGES

NPAGES

Column-Organized

Storage Object Data Object

MPAGES

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Calculating Column-Organized Storage Sizes

• Be careful using NPAGES to determine table size
• May underestimate actual space usage especially for small tables
• Doesn’t take meta data or empty pages into account

• Use the table function ADMIN_GET_TAB_INFO or admin view
ADMINTABINFO to retrieve
• COL_OBJECT_P_SIZE + DATA_OBJECT_P_SIZE + INDEX_OBJECT_P_SIZE

69

User Data COL_OBJECT_P_SIZE

User Data +

Meta Data +

Page Map/Unique
Indexes

COL_OBJECT_P_SIZE +

DATA_OBJECT_P_SIZE +

INDEX_OBJECT_P_SIZE

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Table Compression Statistics in SYSCAT.TABLES

• Only PCTPAGESSAVED applies to column-organized tables too
• Approximate percentage of pages saved in the table
• Runstats collects PCTPAGESSAVED by estimating the number of data pages

needed to store table in uncompressed row orientation

• ADMIN_GET_COMPRESS_INFO not supported yet for column-
organized tables and will return zero rows

70

Row-Organized Table Statistics Column-Organized Table Statistics

PCTPAGESSAVED PCTPAGESSAVED

AVGCOMPRESSEDROWSIZE

AVGROWCOMPRESSIONRATIO

AVGROWSIZE

PCTROWCOMPRESSED

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Estimating Compression Ratios

• PCTPAGESSAVED can be converted to a compression ratio
• See Notes for sample query

71

Compression Ratio = Uncompressed Size / Compressed Size

= 1 / (1 - PCTPAGESSAVED/ 100)

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

PCTENCODED Statistic in SYSCAT.COLUMNS

• Monitor this statistic to determine how many values were left
uncompressed in specific columns

• Percentage of values encoded (compressed) by column-level
dictionary

• It measures number of values compressed NOT compression ratio
72

C1 PCTENCODED = 90

C2 PCTENCODED = 75

C3 PCTENCODED = 100

C1 PCTENCODED = 0

C2 PCTENCODED = 10

C3 PCTENCODED = 0

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

PCTENCODED Example

▪ CHAR and VARCHAR values with high cardinality and no common prefix do not
compress well until Text Compression feature delivered

▪ Prod_Info and Comment have high cardinality and no common prefix
▪ Code has low cardinality
▪ Cust_Num has high cardinality and common prefixes

73

COLUMN TYPENAME LENGTH CARD AVGCOLLE

N

AVG_ENCODED

_LEN

COMP_RATIO PCTENCODE

D

Prod_Info VARCHAR 40 6114112 20 17.48 1.14 30

Comment VARCHAR 600 4022272 141 139 1.01 10

Code VARCHAR 3 4 5 0.17 28.21 98

Cust_Num VARCHAR 80 8145280 12 5.00 3.19 99

Sample values from Cust_Num shows common prefixes:
000000280720, 000000280721, 000000280722, 000000280723

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Maximizing Compression with Data Skew 1/2

• Over time, column-level dictionaries may become less representative
of a table’s data
• PCTENCODED decreases
• Page compression may help maintain an acceptable compression ratio even with

new values
• If PCTENCODED decreases especially for columns used for joining or grouping,

query performance impact is possible

74

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Maximizing Compression with Data Skew 2/2

• It is recommended to monitor PCTENCODED values over time for such
tables/columns that have frequent insert/update/delete activity.

• If you notice that PCTENCODED values are dropping notably lower
and query performance is important for the column:
• Option 1: Unload and reload the table including rebuilding the column-level

dictionaries
• Option 2: Create a new empty table, use the load utility to build a high quality

dictionary, insert data into the new table, drop the old table, and rename the
new table

• Option 3: Use ADMIN_MOVE_TABLE to update your table

• See Notes for more info on these options
75

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Space Usage Overhead for Small/Medium Tables

• 1 column per extent

• Small and medium tables may only use 1 page per extent which
leaves rest of pages in extent unused but available for more data

• Changing tablespace extent size to 2 reduces overhead for small and
medium tables

76

MLN 1

100 Extents *

4 pages per extent *

10 threads = 4000 pages

Table with 100 columns using default of 4 pages per
extent and Parallel Degree 10 on MPP system with 4 MLNs
= 16000 allocated pages with only 4000 used pages

Data

Default tablespace extent size 4

with only 1 page out of 4 used

. . .
MLN 4

100 Extents *

4 pages per extent *

10 threads = 4000 pages

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Session code:

Please fill out your session
evaluation before leaving!
Please fill out your session
evaluation before leaving!

Keri Romanufa
IBM
keri@ca.ibm.com

TRIDEX

77

Please fill out your session

evaluation before leaving!

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Bonus Material for Row based

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Some Bonus Material on Row based
PART 1b:

• Architecture Overview
• Basic Operation Walkthroughs

• Table Management
• Tables, Records

• Page Format, Space Management

• Row Compression (including

Adaptive Compression)

• Currently Committed

• IUD Logging

• Space Mmgt & Clustering

• FSCR Search

• Append Mode

• Clustered Index

• Multi-Dimensional Clustering

• Insert Time Clustered Tables

• Range Partitioned Tables

• Indexes

• Columnar (aka BLU) Tables &

Compression

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Data Page and RID Format

Notes

1) Page reorgs are done automatically online as required.

They can be monitored via MON_GET_TABLE()

2) Free space created by deletes or updates can be held

reserved (not usable) until the delete transaction is

committed and older than:
a) the oldest transaction reading the table, or,

b) the oldest modifying transaction in the db

Free space

(usable without

page reorg)

Record 0

Page Header

-1

Record 2

Page Header

3800 3400 3800 3700

Data Page

1056

473,2

1056 1RID

4 bytes 2 bytes

page# slot#

Record 0

Data Page

473

If deleted space is not being reused,…

…. look for long-running transactions
(eg. APPLID_HOLDING_OLDEST_XACT from MON_GET_TRANSACTION_LOG())

Tip

Use larger page sizes for workloads that tend to
access rows sequentially (eg. Warehousing, TEMP
tables) and smaller page sizes for random access
workloads (eg OLTP)

Tip

Index Leaf Page

Slot Directory

Array of 2 byte integers each

containing offset into page of

actual record data

Embedded free space

(usable after

page reorg))

80

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Default Row Format

CREATE TABLE t1 (c1 INTEGER,
c2 DECIMAL(12),
c3 VARCHAR(20) NOT NULL,
c4 VARCHAR(50) NOT NULL)

INSERT INTO T1 VALUES (null ,0,'','The big red fox')

Off Len

Fixed Portion

no data 0 c4 data

c3 length=0

Variable Portion

Off Len

❑ Attribute byte (1 byte)
▪ is only present for NULLable columns

▪ indicates if the value is in fact NULL

‘The big red fox’

Fixed portion of variable column (4 bytes : offset + length)

Legend:

Actual column data (n bytes)

Off Len

n

81

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Alternate Row Format & Value Compression

CREATE TABLE t1 (c1 INTEGER COMPRESS SYSTEM DEFAULT,
c2 DECIMAL(12) COMPRESS SYSTEM DEFAULT,
c3 VARCHAR(20) NOT NULL,
c4 VARCHAR(50) NOT NULL)

VALUE COMPRESSION

INSERT INTO T1 VALUES (null,0, '', 'The big red fox')

Legend:

Attribute byte (1 byte). Used to

indicate column=NULL or

column=default value.

Offset of column data (2 bytes)

Actual column data (n bytes)

‘The big red fox’o1

o3=o4 indicates c3 length is 0

end offset needed to

calculate length of c4

n do2 o3 o4 end

c3 fixed

Fixed Portion

c1 data c2 data c4 data

c3 length=0

Variable Portion

c4 fixed c4 data

Consider alternate row format (VALUE COMPRESSION keyword) when …
•Significant # of rows contain the column default values (eg. 0 for numerics)

•Significant # of rows contain NULL column values

•Significant # of variable length columns

Tip

82

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Extended Row Size

Allows a table to be larger than the page size maximum.

Requirements for enabling extended row size support for a table:
• The extended_row_sz database configuration parameter must be set to ENABLE. (default for new DB’s)

• The table definition must contain at least one varying length string column (VARCHAR or VARGRAPHIC).

• The row size of the table cannot exceed 1048319 bytes (SQLSTATE 54010).

• Queries requiring an explicit or implicit system temporary table with extended rows needs a system temporary table space that
can fully contain the minimum width of the row. The minimum width of the row is calculated in the same way as the maximum
width except that all VARCHAR and VARGRAPHIC columns are assumed to have a length of 1. 83

Page size Row size limit # Col limit

4 K 4 005 500

8 K 8 101 1 012

16 K 16 293 1 012

32 K 32 677 1 012

CREATE TABLE t1 (c1 INTEGER, c2 DECIMAL(12),
c3 VARCHAR(3000) NOT NULL, c4 VARCHAR(3000) NULL,
c5 VARCHAR(3000) NOT NULL) // in a 4k page tbsp

INSERT INTO T1 VALUES (null, 0, ‘Hello’, null, ’World’)
→ whole row is in the data page

INSERT INTO T1 VALUES (null, 0, ‘Hello’, repeat(‘x’,2500), repeat(‘x’,2500))
→ overflow (1 varchar column) is replaced by a 24byte descriptor and the data is moved into a large object (LOB)
→ varchars <-24 are never replaced

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

(Table-dict) Row Compression

01 opoulos

02 WhitbyONTL4N5R4

… …

Rows compressed in buffer pool, disk, logs, backup images

Dictionary-based LZ compression replaces frequently used byte sequences with 12-bit symbol
❑ Byte sequences can span column boundaries or within columns
❑ Global view of symbol frequency (not limited to single page)

Name Dept Salary City Province Postal_Code

Zikopoulos 510 10000 Whitby ONT L4N5R4

Katsopoulos 500 20000 Whitby ONT L4N5R4

Dictionary (stored in the table)

…L4N5R4ONTWhitby2000500L4N5R4ONTWhitby10000510

…0220000Kats0210000510Zik 5000101

Row 1 Row 2

Zikopoulos Katsopoulos

84

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Data page with

compressed rows
Data page with

uncompressed rows

Effective in buffer pool and on-disk

❑ Saves memory

❑ Saves storage

(Table-dict) Row Compression

85

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Table
Compression

Dictionary
Created

Page Dictionary

Page

Row

Db2 v10- added a page level dictionary to further compress page common symbols
• Adapts to changing data patterns

New keywords on ALTER/CREATE TABLE .. COMPRESS
• ADAPTIVE (default)

• STATIC

Page
Compression

Dictionary

ALTER TABLE … COMPRESS YES

ALTER TABLE … COMPRESS YES ADAPTIVE

ALTER TABLE … COMPRESS YES STATIC

TABLE REORG

or

Automatic

Dictionary Creation

New insert on page

Db2 Adaptive Compression : Overview

86

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Adaptive Compression : How it Works

1. Rows are inserted into a page (compressed via
table dictionary)

2. When page is almost full, page dictionary is built

3. Detect common recurring patterns in original
records

4. Build compressed page by compressing all
existing records

5. Insert page compression dictionary (special
record)

6. Insert more compressed records in additional
free space

Page Compression
Dictionary

Original Page

Compressed Page

87

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Group correlated columns together in table definitions
• E.g. place ‘Make’ (eg. Honda) and ‘Model’ (eg. Accord) columns adjacent to each other

• Db2’s row compression will compress common byte sequences regardless of column boundaries

If you created table spaces prior to V9.1, ensure you’ve enabled Large RIDs and Large Slots if more
than 255 compressed rows will typically fit on your data pages

• Otherwise, Db2 will only place a maximum of 255 rows per page, resulting in less efficient utilization of memory and storage

• Call ADMIN_GET_TAB_INFO() and check LARGE_SLOTS and LARGE_RIDS and for ‘Y’

When using adaptive compression remember …
• New tables:

• COMPRESS YES defaults to ADAPTIVE

• (Can explicitly specify COMPRESS YES STATIC or COMPRESS YES ADAPTIVE)

• Pre-10.1 tables:

• By default, will stay with existing (static) compression

• Use ALTER TABLE … COMPRESS YES ADAPTIVE to enable adaptive compression dynamically

Estimate compression savings with ADMIN_GET_TAB_COMPRESS_INFO()

Report actual compression rate with ADMIN_GET_TAB_DICTIONARY_INFO()

Compression : Hints / Tips / Reminders

88

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

SELECT * FROM EMP

EMPID NAME OFFICE SALARY

6354 Smith A1/21 43

> wait

22D2/18Baum5456205

33X1/03Tata1325104

21AA/00 C3/46Jones783696

43A1/21Smith6354

77 11Y2/11Chan4245

48

salaryofficenameempidRID

EMP

Uncommitted insert

Uncommitted update

Uncommitted delete

Currently Committed Isolation : Motivation

89

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

22D2/18Baum5456

33X1/03Tata1325

21AA/00 C3/46Jones7836

43A1/21Smith6354

11Y2/11Chan4245

salaryofficenameempidRID

EMP

SELECT * FROM EMP

Uncommitted insert

Uncommitted update

Uncommitted delete

205

104

96

77

48

EMPID NAME OFFICE SALARY

6354 Smith A1/21 43

7836 Jones AA/00 21

1325 Tata X1/03 33

5456 Baum D2/18 22

> SUCCESS

Db2 returns currently

committed data without

waiting for locks !
(Delete and Update undone; Insert skipped.)

Currently Committed Isolation : Result

90

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Locklist

X(D)205

X(U)96

X(I)77

lockrowid

INS:Emp,1,6354,Smith,A1/21, 43

INS:Emp,4,1325,Tata,X1/03,33

Log Archive

Active Log Files

INS: Emp,1,4245,Chan,Y2/11,11

Log Buffer

Uncommitted INSERTed data is skipped.

For uncommitted DELETEs and UPDATEs, when encountering a lock which would

otherwise conflict, Db2 uses new information in the lock manager to reconstruct and

return the previously committed data from the log buffer or log file.

As of 11.5 now works cross-member in pS

DEL: Emp,5,5456,Baum,D2/18

-

22D2/18Baum5456

33X1/03Tata1325

21AA/00 C3/46Jones7836

43A1/21Smith6354

11Y2/11Chan4245

salaryofficenameempidRID

EMP
log ref

205

104

96

77

48

UPD: Emp,3,7836,Jones,AA/00→C3/46

Currently Committed : How Does it Work ?

91

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Log-based implementation : simple & fast
• No need for rollback segments

• Currently committed data typically reconstructed from memory (log buffer)

• Exception: updates/deletes from mass update transactions that spill log buffer (active logs read from storage in this case)

Fallback to traditional locking

• If the currently committed data is unavailable (or not available quickly), Db2 will fall back to the traditional locking behavior

• Examples

• Currently committed data is only available from an archived log (as may be the case with infinite logging)

• Updater held table lock (not row lock)

Usage hints & tips
• Consider increasing your log buffer size if you see increased log disk reads

• Use MON_GET_TRANSACTION_LOG() to check:
CUR_COMMIT_DISK_LOG_READS - ideally want this close to 0

• Consider increasing lock list size (or using AUTOMATIC setting)
• To avoid escalation to table locks (disables currently committed behavior for the table)

• Be aware of potential for small increase in log space consumption if CC enabled
• First update to a given row in a transaction logs entire row image

Currently Committed : Internals & Usage Notes

92

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

SQL What's Logged

INSERT RID + New row image

DELETE RID + Old row image

UPDATE RID + Four different cases,…

Sidebar: Row Logging

93

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

What’s logged:
Full before image, plus after

image of changing bytes and

new bytes (if row is growing).

When used:
1. Currently Committed is

enabled,

- and -

2. First update to a given

row in a given

transaction,

- and -

3. DATA CAPTURE

CHANGES not in effect.

Logged John 500 10000 Plano TX AABB

John 500 10000 Plano TX AABB

John 602 20012 Plano TX AABB

Original Row

Updated Row

602 20012

John 500 10000 Plano TX AABB

Fred

Original Row

Updated Row

Logged

Fred 500 10000 Plano TX AABBCC

John 500 10000 Plano TX AABB

CC

UPDATE Row Logging

94

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Logged

John 500 10000 Plano TX AABB

John 602 20012 Plano TX AABB

Original Row

Updated Row

What’s logged:
XOR between old and new rows

from 1st changed column to last

changed column.

When used:
1. Currently Committed not in

effect, (or, CC is in effect and

transaction is updating given row again),

- and -

2. Row length is not changing,

- and -

3. DATA CAPTURE CHANGES

not in effect.

John 500 10000 Plano TX 24357

Fred 500 10000 Plano TX 24355

‘1A35D8C9E88719A6C23340037DCEFF8928D0A7883’x

Original Row

Updated Row

Logged

When UPDATES comprise a significant portion of your workload …
•Weigh extra UPDATE logging vs concurrency benefits of currently committed

•Try to place frequently updated columns adjacent in row definition

Tip

‘18A0FF33C’x

UPDATE Row Logging

95

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Fred 500 10000 Plano TX AABB

Frank 500 10000 Plano TX AABB

UPDATE Row Logging

‘1A35D8C9E88719A6C23340037DF8928D0A7’x BB

Fred 500 10000 Plano TX AABB

What’s logged:
XOR between new & old row from

1st word that changes to end of

smaller row version; then any

residual words from larger row

version.

When used:
Same scenario as previous except

row length is changing. Fred 500 10000 Plano TX AABBCC

CC

XOR from 3rd byte to end of 1st row Last

byte of

2nd row

Original Row

Updated Row

Logged

Original Row

Updated Row

Logged

When UPDATES comprise a significant portion of your workload …
•Try to place frequently updated columns at end of row definition

Tip

96

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

John 500 10000 Plano TX 24355

What’s logged:
Full copies of old and new

rows

When used:
Whenever DATA CAPTURE

CHANGES (replication) is in

effect for the table.

“Full Before & After Row Image”

Frank 500 10000 Plano TX 24355

Original Row

Updated Row

Logged John 500 10000 Plano TX 24355

Frank 500 10000 Plano TX 24355

UPDATE Row Logging

97

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

INSERT Processing (& Space Mgt) 1/2

• Default INSERT search algorithm:

• Use the Free Space Control Records (FSCRs) to find page with enough space

• Even if an FSCR indicates that a page has enough free space, that space may
not be usable if it is "reserved" by an uncommitted DELETE from another
transaction

• Ensure transactions COMMIT frequently; otherwise uncommitted freed space
will not be reusable

• Search 5 FSCRs (by default)
• if there is no page with enough space, append record to end of table

98

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

INSERT Processing (& Space Mgt) 2/2

• DB2MAXFSCRSEARCH=<num> registry variable limits the number of FSCRs
visited for an INSERT
• Start with the default (5) for DB2MAXFSCRSEARCH, as it is designed for most

workloads
• Increase it to favor more aggressive space reuse, or, for extremely large tables
• Decrease it to favor INSERT speed

• Each search starts at the FSCR where last search ended

• Once the entire table has been searched: we append without searching, until
space is created elsewhere in table, via DELETE, for example

99

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

500

501

0

1

Insert 1

Inserts use

FSCRs to find a

page with

enough space

Insert 2 Inserts 3 through n

100000

100032

Subsequent inserts

fill up 2 new extents ...

Insert n+1

A Free Space Control Record

Page number within table500

Legend

An inserted record
An existing record

Db2MAXFSCRSEARCH=<num> registry variable

limits the # of FSCRs visited for an INSERT

Default of 5 works well for typical workloads

Increase it to favor more aggressive space

reuse, or, for extremely large tables

Decrease it to favor INSERT speed

Special value of -1 means unlimited FSCR

search

1000

1001

500

501

0

1

1500

1501

2000

2001

2500

Subsequent

inserts pick up

where

previous left

off

2501

100000

New

Page

allocated

when 5 FSCRs

searched
3000

2500

2501

Next insert resumes FSCR

search, starting at the last

FSCR

Tips

100

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

clustering

index

on region

table

Space Management & Clustering

Other search algorithm options:
• Use ALTER TABLE APPEND ON (avoids searching and maintenance of FSCRs)

• Tip: use APPEND ON for tables that only grow (eg journals)

• Use a clustering index on the table (CREATE INDEX ON T1 CLUSTER)

• Db2 tries to insert records on the same page as other records with similar index key values,
resulting in more efficient range scans and prefetching

• If there is no space on that page, it tries the surrounding 500 pages, then reverts to the default
search algorithm but uses a worst-fit, instead of first-fit approach (to establish a new 'mini'
clustering area)

• Tips:
• Use a clustering index to optimize queries that retrieve multiple records in index order, as it results in less physical I/Os
• When a clustering index is defined, use ALTER TABLE PCTFREE nn before load or reorg. This leaves nn% free space on

the table's data pages after load and reorg, and increases the likelihood that the clustering insert algorithm will find
free space on the desired page

101

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Multidimensional Clustering

Divides the table up into ‘extents’ and ensures that each record in an extent contains the
same value in all interesting dimensions

• Extent = consecutive group of pages, big enough for efficient I/O (typically 32 pages; 4 in the eg
below)

• Queries in all dimensions benefit
• This clustering is always maintained by Db2; it never degrades

SELECT * FROM Sales WHERE Region = SW
• 2 big block I/Os to retrieve pages containing region SW

• All sequential I/O

SELECT * FROM Sales WHERE Year = 2004
• 2 big block I/Os to retrieve pages containing year 2004

• All sequential I/O

Have your cake and eat it too !

NW,2004 SW,2004 SW,2005

Region

Year

102

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Simply an append mode table where you can “reclaim” from front to create a sliding window.
Full Table Deletes of Oldest “reorg” of regular reorg reclaim of ITC

1000

1001

500

501

0

1

1500

1501

2000

2001

2500

2501

1000

1001

500

501

0

1

1500

1501

2000

2001

2500

2501

1000

1001

500

501

0

1

1500

1501

2000

2001

2500

2501

1000

1001

500

501

0

1

1500

1501

2000

2001

2500

2501

DATA MOVED

EARLIER IN

TABLE PLUS A

TRUNCATE!

EXTENTS

REMOVED

FROM TABLE

103

ITC “reorg” benefits

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Space Mgt & Clustering : Hints / Tips / Reminders

Make effective use DB2MAXFSCRSEARCH
• Large values (or -1) to favor space reuse and reorg avoidance

• Small values to favor INSERT speed

•

If range scans are predominant use clustering to optimize their performance
• MDC or Clustering index

• Use the design advisor to assist with definition

•

APPEND mode can be useful in isolated scenarios to optimize INSERT speed
• However if/when mass deletes occur you either need to instead use ITC tables or have an alternative

strategy

104

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Range Partitioned Tables

tbsp3tbsp2tbsp1

t1.p1 t1.p2 t1.p3

Short and long forms

Partitioning column(s)

 Must be base types (e.g. No LOBS, LONG
VARCHARS)

 Can specify multiple columns

 Can specify generated columns

Notes

 SQL0327N The row cannot be
inserted because it is outside the
bounds

 Special keywords, MINVALUE,
MAXVALUE can be used to specify
open ended ranges, e.g.:

CREATE TABLE t1 …
(STARTING(MINVALUE)
ENDING(MAXVALUE) …

V11.1 added per partition REORG

Short Form

CREATE TABLE t1(c1 INT) IN tbsp1, tbsp2, tbsp3

PARTITION BY RANGE(c1)

(STARTING FROM (1) ENDING100) EVERY (33))

Long Form

CREATE TABLE t1(c1 INT)

PARTITION BY RANGE(a)

(STARTING FROM (1) ENDING(34) IN tbsp1,

ENDING(67) IN tbsp2,

ENDING(100) IN tbsp3)

1 <= c1 < 34 34 <= c1 < 67 67 <= c1 <= 100

105

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Indexes : Global (non-partitioned)

tbsp3tbsp2tbsp1

t1.p1 t1.p2 t1.p3

Indexes can be global RIDs in index pages contain 2-
byte partition ID

Each index is in a separate storage object

 By default, in the same tablespace as the first
data partition

 Can be created in different tablespaces, via

• INDEX IN clause on CREATE TABLE (default is
tablespace of first partition)

• Note: INDEX IN clause works for MDC indexes (‘block’
indexes)

• New IN clause on CREATE INDEX

 Recommendation

• Place indexes in LARGE tablespaces

• ** Per partition reorg with global indexes is not yet
supported.

CREATE TABLE t1(c1 INT, c2 INT, …)

IN tbsp1, tbsp2, tbsp3

INDEX IN tbsp4

PARTITION BY RANGE(c1)

(STARTING FROM (1) ENDING100) EVERY (33))

CREATE unique INDEX i1 (c2)

CREATE INDEX i2 (c3) IN tbsp5

tbsp5tbsp4

i2i1

106

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

tbsp3tbsp2tbsp1

t1.p1 t1.p2 t1.p3

Indexes can also be local RIDs

All local indexes in single storage object
(like a non-partitioned table)

CREATE TABLE t1(c1 INT, c2 INT, …)

IN tbsp1, tbsp2, tbsp3

PARTITION BY RANGE(c1)

(STARTING FROM (1) ENDING100) EVERY (33))

CREATE INDEX i1(c1) PARTITIONED

tbsp5tbsp4

i

i1.p1 i1.p3
i1.p2

Indexes : Local (partitioned)

107

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

('D',rid,pgid) ('P',rid,pgid) (DHK,pgid)

('A',rid,pgid)('D',rid,pgid) ('F',rid,pgid) ('N',rid2,pgid) ('P',rid,pgid)

('E',rid) ('F',rid) ('G',rid) ('I',rid) ('N',rid1,rid2) ('N',rid3,rid4) ('P',rid)

'N' 'Q' 'G' 'F' 'N' 'E' 'N' 'A' 'T' 'I' 'P' 'N'

Root

Node

Leaf

Nodes

Intermediate

Nodes

Data

Pages

B+ Indexes
“>P” ?

108

('T',rid,pgid) (DHK,pgid)

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Type 2 Indexes and “Pseudo-Deleted Keys”

APP 1: DELETE FROM T1
WHERE C1=13

APP 2: INSERT INTO T1
VALUES (13,....)

APP 2: SELECT ... FROM T1
WHERE C1>10

APP 3: INSERT INTO T1

VALUES (12,....)

D

prevents unique

violations

prevents dirty reads

no false conflict !!

Type 2 Indexes

with Pseudo-Deletes

10 13 16 18

APP 1: DELETE FROM T1

WHERE C1=13

APP 2: INSERT INTO T1

VALUES (13,....)

APP 2: SELECT ... FROM T1

WHERE C1>10

allows false conflict

prevents unique

violations

prevents dirty reads

APP 3: INSERT INTO T1

VALUES (12,....)

Type 1 Indexes

and Next Key Locking

109

10 13 16 18

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

When are Pseudo-Deleted Keys Freed?

During INSERTS
• If such a cleanup might avoid the need to split the page

During subsequent deletes
• If a new delete results in all keys on the page being marked as deleted, an attempt will be made to find another page that only contains pseudo-deleted keys and

for which all the deletes are committed; if such a page is found, it will be removed from the index tree

Any rebuild of the index including those resulting from:
• REORG TABLE (not using the INPLACE option)
• REORG INDEXES ALL
• IMPORT with REPLACE
• LOAD with the INDEXING MODE REBUILD option

When the REORG INDEXES command with the CLEANUP option is specified
• CLEANUP ONLY PAGES :
• Searches for and frees indexes pages on which all keys are marked deleted and known to be committed
• CLEANUP ONLY ALL :
• Frees not only index pages on which all keys are marked deleted and known to be committed, but also removes keys marked deleted and known to be

committed on pages that contain some undeleted keys

Tip : REORG INDEXES … CLEANUP is more efficient faster than a full index REORG
• Done in-place (no separate object built, and not object-switch phase)

110

