
IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Db2 Query Optimization 101

John Hornibrook

IBM Canada

Db2 LUW

Optimal query access plans are essential for good data server
performance and it is the Db2 query optimizer's job to choose
the best access plan. The optimizer is a very sophisticated
component of the data server, tasked with the challenging job
of choosing good access paths for the variety of features and
table organizations supported by Db2. The optimizer can
automatically rewrite complex SQL resulting in huge
performance improvements. It models various aspects of Db2
runtime so that it can choose the best access plan out of
hundreds of thousands of possible options. Attend this session
to get an overview of how the optimizer works and to get some
tips on how to understand its decisions and control its behavior.

1

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Agenda

• What is query optimization does and why is it important for
performance?

• The different phases of query optimization

• How catalog statistics are used in query optimization

• How the query optimizer costs access plans

• Understand access plans using the explain facility

2

2

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Why Optimize Queries (1|2)?

• Performance
• Improvement can be orders of magnitude for complex queries

• Lower total cost of ownership
• Query tuning requires deep skill

• Complex DB designs
• SQL/XQuery generated by query generators, naive users
• Fewer skilled administrators available
• Various configuration and physical implementation

3

This Photo by Unknown Author is licensed under CC BY-SA

3

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Why Optimize Queries (2|2)?

• There are a lot of factors to consider when optimizing query execution:
• Configuration options

• Memory, CPUs, I/O, communication channels

• Table organization schemes
• DB partitioning, table partitioning, multi-dimensional clustering

• Data formats
• Column, row, Hadoop

• Complex data types
• XML

• Federation, data virtualization
• Parts of the query execute on remote DB servers.

• Auxiliary performance and storage options
• Indexes, MQTs, compression

4

This Photo by Unknown Author is licensed under CC BY

4

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

What is Query Optimization?
• SQL compilation:
• In: SQL statement, Out: access section
• Query optimization is 2 steps in the Db2 SQL statement compilation process

• Query transformation (rewrite)
• Access plan generation

SELECT ITEM_DESC, SUM(QUANTITY_SOLD),

AVG(PRICE), AVG(COST)

FROM PERIOD, DAILY_SALES, PRODUCT, STORE

WHERE

PERIOD.PERKEY=DAILY_SALES.PERKEY AND

PRODUCT.PRODKEY=DAILY_SALES.PRODKEY

AND

STORE.STOREKEY=DAILY_SALES.STOREKEY AND

CALENDAR_DATE BETWEEN AND

'01/01/2012' AND '04/28/2012' AND

STORE_NUMBER='03' AND

CATEGORY=72

GROUP BY ITEM_DESC

Thread 0

DSS

TQA (tq1)

AGG (complete)

BNO

EXT

Thread 1

TA (Product)

NLJN (Daily Sales)

NLJN (Period)

NLJN (Store)

AGG (partial)

TQB (tq1)

EXT

Thread 2

TA (DS_IX7)

EXT

Thread 3

TA (PER_IX2)

EXT

Thread 4

TA (ST_IX1)

EXT

Access plan generationQuery transformation

Access

section

Dozens of query

transformations

Hundreds or thousands

of access plan options

Store

Product

Product Store

NLJOIN

Daily SalesNLJOIN

Period

NLJOIN

Product

NLJOIN

Daily Sales

NLJOIN

Period

NLJOIN

Store

HSJOIN

Daily Sales

HSJOIN

Period

HSJOIN

Product

StoreZZJOIN

Daily Sales

HSJOIN

Period

5

5

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Phases of SQL Compilation

Parsing
▪ Catch syntax errors
▪ Generate internal representation of query

Semantic checking
▪ Determine if query makes sense
▪ Incorporate view definitions
▪ Add logic for constraint checking and

triggers
Query optimization

▪ Modify query to improve performance
(Query Rewrite)

▪ Choose the most efficient "access plan"
Pushdown Analysis

▪ Federation “optimization”
Threaded code generation

▪ Generate efficient "executable" code
▪ “Access section”

QGM

•Sometimes references to “optimization” really
mean SQL compilation
•There is a lot more involved to SQL compilation

6

6

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Query Optimization
• SQL compilation:

• Query transformation (rewrite)
• Access plan generation

SELECT ITEM_DESC, SUM(QUANTITY_SOLD),

AVG(PRICE), AVG(COST)

FROM PERIOD, DAILY_SALES, PRODUCT, STORE

WHERE

PERIOD.PERKEY=DAILY_SALES.PERKEY AND

PRODUCT.PRODKEY=DAILY_SALES.PRODKEY

AND

STORE.STOREKEY=DAILY_SALES.STOREKEY AND

CALENDAR_DATE BETWEEN AND

'01/01/2012' AND '04/28/2012' AND

STORE_NUMBER='03' AND

CATEGORY=72

GROUP BY ITEM_DESC

Thread 0

DSS

TQA (tq1)

AGG (complete)

BNO

EXT

Thread 1

TA (Product)

NLJN (Daily Sales)

NLJN (Period)

NLJN (Store)

AGG (partial)

TQB (tq1)

EXT

Thread 2

TA (DS_IX7)

EXT

Thread 3

TA (PER_IX2)

EXT

Thread 4

TA (ST_IX1)

EXT

Access plan generationQuery transformation

Access

section

Dozens of query

transformations

Hundreds or thousands

of access plan options

Store

Product

Product Store

NLJOIN

Daily SalesNLJOIN

Period

NLJOIN

Product

NLJOIN

Daily Sales

NLJOIN

Period

NLJOIN

Store

HSJOIN

Daily Sales

HSJOIN

Period

HSJOIN

Product

StoreZZJOIN

Daily Sales

HSJOIN

Period

7

7

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Query Rewrite - An Overview

• What is Query Rewrite?
• Rewriting a given SQL query into a semantically equivalent form that may be

processed more efficiently

• Example:
• Original query:

SELECT DISTINCT CUSTKEY, NAME FROM CUSTOMER

• After Query Rewrite:
SELECT CUSTKEY, NAME FROM CUSTOMER

• Rationale:
• CUSTKEY is unique, distinct is redundant

8

8

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Query Rewrite - Why?

• Hidden culprit:
• Multiple specifications allowed in SQL
• SQL allows multiple specifications ;-)
• There are many ways to express the same query

• Visible reasons:
• Query generators

• Often produce suboptimal queries that don't perform well
• Don't permit "hand optimization"

• Complex queries
• Often result in redundancy, especially with views

• Large data volumes
• Optimal access plans more crucial
• Penalty for poor planning is greater

9

9

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Let’s follow an example

SELECT

SUM(CS_EXT_SHIP_COST) AS "TOTAL SHIPPING COST",

AVG(CS_EXT_SHIP_COST) AS “AVERAGE SHIPPING COST"

FROM

CATALOG_SALES CS1,

DATE_DIM,

CUSTOMER_ADDRESS

WHERE

D_DATE BETWEEN ‘2018-4-01' AND (CAST(‘2018-4-01' AS DATE) + 60 DAYS) AND

CS1.CS_SHIP_DATE_SK = D_DATE_SK AND

CS1.CS_SHIP_ADDR_SK = CA_ADDRESS_SK AND

CA_STATE = 'NY' AND

NOT EXISTS

(SELECT * FROM CATALOG_RETURNS CR1 WHERE CS1.CS_ORDER_NUMBER = CR1.CR_ORDER_NUMBER)

10

3 tables

(2 joins)

Search conditions

(predicates)

“Get the total and average
shipping cost for NY catalog sales
that had no returns for the 60 days
starting Apr. 1 2018”

10

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Step 1: Parsing and Query Graph Construction

• An SQL statement is
parsed into a Query
Graph

• Yellow boxes are
relational operations

• Red boxes are tables or
table functions

11

CATALOG

RETURNS

CATALOG

SALES

CUSTOMER

ADDRESS

DATE_DIM

SELECT 2

SELECT 3

GROUP BY

SELECT 1

SELECT * FROM

CATALOG_RETURNS CR1

WHERE

CS1.CS_ORDER_NUMBER =

CR1.CR_ORDER_NUMBER

D_DATE BETWEEN ‘2018-4-01' AND

(CAST(‘2018-4-01' AS DATE) + 60 DAYS) AND

CS1.CS_SHIP_DATE_SK = D_DATE_SK AND

CS1.CS_SHIP_ADDR_SK = CA_ADDRESS_SK AND

CA_STATE = 'NY' AND NOT EXISTS (SELECT 3)

SUM(CS_EXT_SHIP_COST),

AVG(CS_EXT_SHIP_COST

Correlation!

The SQL statement is first parsed and the relational operations are represented as
nodes in a query graph. The yellow nodes represent relational operations such as
selection, aggregation (group by), union, insert, update, delete, etc.. The red
nodes are leaf nodes representing data sources such as tables or table functions.
The edges represent the flow of rows. Rows can flow in both directions. A
downward flow represents a correlated reference in a lower sub-select, such as
the correlated NOT EXISTS subquery in this example. Correlation requires that the
lower sub-select be re-evaluated for each row provided by the downward edge.

A SELECT node can have multiple input edges which can either represent joins or
subquery predicates. SELECT nodes also include SELECT list items including
expressions and WHERE clause predicates.

11

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Step 2: Query Rewrite
• Correlated NOT EXISTS subquery is

converted to an anti-join

• Constant expressions are pre-
computed

• Aggregation operations are unified

12

CATALOG

RETURNS

CATALOG

SALES

CUSTOMER

ADDRESS

DATE_DIM

SELECT 2

ANTIJOIN

GROUP BY

SELECT 1

SELECT Q5.CS_EXT_SHIP_COST

CATALOG_RETURNS Q1

ANTIJOIN (SELECT 2) Q5

ON Q5.CS_ORDER_NUMBER =

Q1.CR_ORDER_NUMBER)

D_DATE >= ’04/01/2018' AND

D_DATE <= ’05/31/2018’ AND

CS_SHIP_DATE_SK = D_DATE_SK AND

CS_SHIP_ADDR_SK = CA_ADDRESS_SK

AND CA_STATE = 'NY'

SUM(CS_EXT_SHIP_COST) AS $C0,

COUNT_BIG(CS_EXT_SHIP_COST) AS $C1

$C0 AS "TOTAL SHIPPING COST",

($C0/$C1) AS "AVG SHIPPING COST"

3 important query rewrites have occurred:

1) The correlated NOT EXISTS subquery has been rewritten as an anti-join. An anti-join is a type
of join where only the rows that don’t match are returned. The Db2 query runtime engine
supports a efficient native anti-join.

2) The date expression “CAST(‘2018-4-01' AS DATE) + 60 DAYS” has been pre-computed as
’05/31/2018’. This allows the optimizer to compute a more accurate selectivity estimate in a
later phase.

3) The AVG aggregation function can be replaced with SUM/COUNT, re-using the existing SUM
result

12

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Db2 Query Rewrite Technology (1|2)

• Heuristic-based decisions
• Push predicates close to data access
• Decorrelate whenever possible
• Transform subqueries to joins
• Merge view definitions

• Extensible architecture
• Set of rewrite rules and rule engine
• Each rewrite rule is self-contained
• Can add new rules and disable existing ones easily

13

13

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Db2 Query Rewrite Technology (2|2)

• Rule engine with local cost-based decisions

• Rule engine iteratively transforms query until the query graph
reaches a steady-state

• ~140 rules

• This presentation shows only a few examples

14

14

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Query Rewrite - Operation Merge

• Goal: give the optimizer maximum latitude in its decisions
• Techniques:
• View merge

• makes additional join orders possible
• can eliminate redundant joins

• Subquery-to-join transformation
• removes restrictions on join method/order
• improves efficiency

• Redundant join elimination
• satisfies multiple references to the same table with a single scan

• Shared aggregation
• reduces the number of aggregation operations

15

15

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Query Rewrite - Predicate Translation

• GOAL: optimal predicates
• Distribute NOT (De Morgan's law)

... WHERE NOT(COL1 = 10 OR COL2 > 3)
• becomes
... WHERE COL1 <> 10 AND COL2 <= 3

• Predicate transitive closure
• given predicates:
T1.C1 = T2.C2, T2.C2 = T3.C3, T1.C1 > 5

• add these predicates...
T1.C1 = T3.C3 AND T2.C2 > 5 AND T3.C3 > 5

• IN-to-OR conversion for Index ORing
• and many more...

16

16

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Query Optimization
• SQL compilation:

• Query transformation (rewrite)
• Access plan generation

SELECT ITEM_DESC, SUM(QUANTITY_SOLD),

AVG(PRICE), AVG(COST)

FROM PERIOD, DAILY_SALES, PRODUCT, STORE

WHERE

PERIOD.PERKEY=DAILY_SALES.PERKEY AND

PRODUCT.PRODKEY=DAILY_SALES.PRODKEY

AND

STORE.STOREKEY=DAILY_SALES.STOREKEY AND

CALENDAR_DATE BETWEEN AND

'01/01/2012' AND '04/28/2012' AND

STORE_NUMBER='03' AND

CATEGORY=72

GROUP BY ITEM_DESC

Thread 0

DSS

TQA (tq1)

AGG (complete)

BNO

EXT

Thread 1

TA (Product)

NLJN (Daily Sales)

NLJN (Period)

NLJN (Store)

AGG (partial)

TQB (tq1)

EXT

Thread 2

TA (DS_IX7)

EXT

Thread 3

TA (PER_IX2)

EXT

Thread 4

TA (ST_IX1)

EXT

Access plan generationQuery transformation

Access

section

Dozens of query

transformations

Hundreds or thousands

of access plan options

Store

Product

Product Store

NLJOIN

Daily SalesNLJOIN

Period

NLJOIN

Product

NLJOIN

Daily Sales

NLJOIN

Period

NLJOIN

Store

HSJOIN

Daily Sales

HSJOIN

Period

HSJOIN

Product

StoreZZJOIN

Daily Sales

HSJOIN

Period

17

17

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Access Plan Generation

• An Access Plan represents a sequence of runtime operators used to
execute the SQL statement

• Represented as a graph where each node is an operator and the
edges represent the flow of data

• The order of execution is generally left to right
• But there are some exceptions
• (Hash join build table is on the RHS and is created first)

• Use the explain facility to see the access plan
• (More on this later)

18

HSJOIN

CATALOG_

SALES

DATE_DIM

TBSCAN TBSCAN

1) Create

hash table

2) Probe

hash table

18

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Access Plan Generation

• Access plan generation occurs by scanning the Query Graph

• The access plan is built from the bottom up
1. Build sub-plans for accessing tables first

• Table scans, index scans
2. Build plans for relational operations that consume those tables

• Joins, GROUP BY, UNION, ORDER BY, DISTINCT

• Multiple preparatory Query Graph scans collect information to drive
access plan generation
• Interesting orders, DB partitioning and keys
• Dependencies dictated by the Query Graph

• i.e. correlation – must read table 1 before table 2

19

19

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Access Plan Generation – Base Access and Joins

CATALOG

SALES

Q2

SELECT

DATE_DIM

Q1

CUSTOMER

ADDRESS

Q3

D_DATE >= ’04/01/2018' AND

D_DATE <= ’05/31/2018’ AND

CS_SHIP_DATE_SK = D_DATE_SK AND

CS_SHIP_ADDR_SK = CA_ADDRESS_SK

AND CA_STATE = 'NY'

TBSCAN

IXSCAN 1

IXSCAN 2

TBSCAN

IXSCAN 3

FETCH

TBSCAN

TBSCAN

Q1

TBSCAN

Q2

HSJOIN

TBSCAN

Q2

TBSCAN

Q1

HSJOIN

TBSCAN

Q1

TBSCAN

Q2

NLJOIN

TBSCAN

Q1

IXSCAN

Q2

NLJOIN

2) Build base

accesses

3) Enumerate

joins

TBSCAN

Q1

TBSCAN

Q2

HSJOIN TBSCAN

Q3

HSJOIN

2-way joins

3-way joins

1) Scan Query Graph

20

• For each relational operation in the query
graph, evaluate runtime alternatives
• Operation order

• joins
• predicate application – where?
• aggregation – can be staged

• Implementation to use:
• table scan vs. index scan
• nested-loop join vs. sort-merge join vs. hash join

vs. zig-zag join

20

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Access Plan Generation – GROUP BY

21

GROUP BY

(REGION)

SELECT

SORT

(REGION)

Cost: 300

GROUPBY

Cost: 400

Plan 1

Cost:

100

GROUPBY

Cost: 300

Plan 2

ORDER

(REGION)

Cost: 200

Scan Query Graph

Build GROUP BY plans

Sub-plans built earlier

• Db2 runtime has different ways to
execute GROUP BY

• One method requires order on
grouping columns

• Some sub-plans might have the needed
order, others require a SORT

• In general, only the cheapest sub-plans
are kept

• Except if they have an ‘interesting’
property, like order
• (Costs are cumulative)

21

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Access Plan Operators

• Access plan operators have arguments and properties

• Arguments tell Db2 runtime how they execute
• e.g. sort key columns, partitioning columns, # of pages to prefetch, etc.

• Properties describe characteristics of the data stream
• Columns projected
• Order
• Partitioning (DB partitioned environment)
• Keys (uniqueness)
• Predicates (filtering)
• Maximum cardinality

22

22

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Access Plan Operator Properties

• Properties can be exploited to improve performance

• Order, uniqueness and partitioning can be “valuable”
• Because it takes work to create them
• Order needs SORT ($$$)
• Partitioning needs a table queue (TQ) ($$$)
• Uniqueness needs a DISTINCT (or duplicate removing SORT) ($$$)

• More expensive sub-plans are retained if they possess an ‘interesting’
property

• Interestingness depends on the semantics of the query
• Represented in the query graph

23

23

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Access Plan Generation Considerations

• Where the access should execute:
• Database partitioned systems

• co-located, repartitioned or broadcast joins
• Multi-core parallelism

• degree of parallelism, parallelization strategies
• Federated systems

• push operations to remote servers
• compensate in Db2

• Column or row processing

24

24

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Join Enumeration

• The search algorithm used to plan joins

• Search complexity depends on how tables are connected by
predicates

• 2 methods:
• Greedy

• Most efficient, but not exhaustive
• Could miss some good plans

• Dynamic
• Exhaustive, but expensive for large or highly connected join graphs

25

25

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Dynamic Join Enumeration

26

STORE_SALES

CUSTOMER

STORE

DATE_DIM

{ CUSTOMER (Q1) }, { STORE_SALES (Q4) }
{ STORE (Q2) }, { STORE_SALES (Q4) }
{ DATE_DIM (Q3) }, { STORE_SALES (Q4) }

{ CUSTOMER (Q1) }, { DATE_DIM (Q3), STORE_SALES (Q4) } P4
{ CUSTOMER (Q1) }, { STORE (Q2), STORE_SALES (Q4) } P5
{ STORE (Q2) }, { DATE_DIM (Q3), STORE_SALES (Q4) } P6
{ STORE (Q2) }, { CUSTOMER (Q1), STORE_SALES (Q4) } P5
{ DATE_DIM (Q3) }, { STORE (Q2), STORE_SALES (Q4) } P6
{ DATE_DIM (Q3) }, { CUSTOMER (Q1), STORE_SALES (Q4) } P4

{ CUSTOMER (Q1) }, { STORE (Q2), DATE_DIM (Q3), STORE_SALES (Q4) }
{ STORE (Q2) }, { CUSTOMER (Q1), DATE_DIM (Q3), STORE_SALES (Q4) }
{ DATE_DIM (Q3) }, { CUSTOMER (Q1), STORE (Q2), STORE_SALES (Q4) }

26

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Greedy Join Enumeration

27

STORE_SALES

CUSTOMER

STORE

DATE_DIM

Only the cheapest join partition from each stage moves to
the next stage

{ STORE_SALES (Q4) }, { CUSTOMER (Q1) }
{ STORE_SALES (Q4) }, { STORE (Q2) }
{ STORE_SALES (Q4) }, { DATE_DIM (Q3) }

{ CUSTOMER (Q1) }, { STORE (Q2), STORE_SALES (Q4) }
{ DATE_DIM (Q3) }, { STORE (Q2), STORE_SALES (Q4) }

{ CUSTOMER (Q1) }, { STORE (Q2), DATE_DIM (Q3), STORE_SALES (Q4) }

27

28

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Optimization Classes and Join Enumeration
• Use optimization classes to control join enumeration method
• Recommendation – use the default (5)
• Greedy join enumeration

• 0 - minimal optimization for OLTP
• 1 - low optimization, no HSJOIN, IXSCAN, limited query rewrites
• 2 - full optimization, limit space/time

• use same query transforms & join strategies as class 5

• Dynamic join enumeration
• 3 - moderate optimization, more limited plan space
• 5 - self-adjusting full optimization (default)

• uses all techniques with heuristics
• 7 - full optimization

• similar to 5, without heuristics
• 9 - maximal optimization

• spare no effort/expense
• considers all possible join orders, including Cartesian products!

•Optimization requires processing time and memory

•You can control resources applied to query optimization:

•(similar to the -O flag in a C compiler)

•Special register, for dynamic SQL
•SET CURRENT QUERY OPTIMIZATION = 1

•Bind option, for static SQL
• BIND YOURAPP.BND QUERYOPT 1

•Database configuration parameter, for default

•UPDATE DB CFG FOR <DB> USING

DFT_QUERYOPT <N>

•Static & dynamic SQL may use different values

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Optimizer Cost Model

• Detailed model for each access plan operator

• Estimates the # of rows processed by each operator (cardinality)
• Estimates predicate filtering (filter factor or selectivity)
• Most important factor in determining an operator’s cost

• Combine estimated runtime components to compute “cost”:
• CPU (# of instructions) +
• I/O (random and sequential) +
• Communications (# of IP frames, in parallel or Federated environments)

29

29

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Simplified Costing Example (1|2)

• The cost model uses information from:
• DBM config
• System catalogs (SYSCAT.STOGROUPS, SYSCAT.TABLESPACES)
• Catalog statistics (SYSSTAT.*)

30

Customer

TBSCAN
WHERE STATE = ‘NC’

CARDINALITY: 1000000

FPAGES: 50000

SELECTIVITY: 0.65

(frequent value statistics)

I/O cost =

(50000 * PAGESIZE / DEVICEREADRATE (MB/s))

+ (50000 / EXTENTSIZE * OVERHEAD (ms))

CPU cost = CPUSPEED * (

(#TBSCAN instructions * 50000) + (#predicate

instructions* 1000000) + (#data copy * 0.65 * 1000000))

Total Cost = I/O cost + CPU cost

StatisticsCost Model

OVERHEAD

This attribute specifies the I/O controller time and the disk seek and latency time in
milliseconds.

DEVICE READ RATE

This attribute specifies the device specification for the read transfer rate in megabytes per
second. This value is used to determine the cost of I/O during query optimization. If this value is
not the same for all storage paths, the number should be the average for all storage paths that
belong to the storage group.

30

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Simplified Costing Example (2|2)

• Each runtime cost component is modelled using milliseconds

• Runtime cost components are summed

• This does NOT represent elapsed time
• Cost components typically execute concurrently
• CPU and I/O parallelism

• Therefore total cost is in units of ‘timeron’
• Just a made up name so it isn’t mistaken for elapsed time

31

31

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Optimizer Cost Model - Timerons

• Why is ‘timeron’ a better cost metric than elapsed time?
• Timeron represents total system resource consumption
• Preferred system metric assuming concurrent query / multi-user environment
• Usually correlates to elapsed time too

• Some exceptions:
• Approximate elapsed time is used for DB partitioned (MPP) systems

• Total cost is average resource consumption per DB partition
• Encourages access plans that execute on multiple DB partitions

• Cost to get the first N rows
• Used for OPTIMIZE FOR N ROWS/FETCH FIRST N ROWS ONLY or when ‘piped’

plans are desired
32

32

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Costing for Database Partitioned Systems

• Cost is per DB partition

• Cost diminishes with more nodes -> encourages query parallelism

• Assumes a particular operator must process the same number of
rows, globally

33

TBSCAN

250 rows

TBSCAN

250 rows

TBSCAN

250 rows

TBSCAN

250 rows

TBSCAN

1000 rows

Execute on 4 nodes
Cost = C * 250

Execute on 1 node
Cost = C * 1000

33

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Optimizer Cost Model Considerations

• Detailed modeling of:
• Buffer pool pages needed vs. pages available and hit ratios
• Rescan costs vs. build costs
• Prefetching
• Non-uniformity of data

• e.g. low-cardinality skew across MPP DB partitions
• Operating environment
• First tuple costs (for OPTIMIZE FOR N ROWS)
• Remote server properties (Federation)

34

34

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Optimizer Environment Awareness

• Speed of CPU
• Determined automatically at instance creation time
• Runs a timing program
• Can be set manually (CPUSPEED DBM configuration parameter)

• Storage device characteristics
• Used to model random and sequential I/O costs
• I/O speed is based on :

• I/O subsystem latency
• Time to transfer data

• Parameters are represented at the storage group and table space level
• They are not set automatically by the DB2 server

35

35

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Storage I/O Characteristics

• Storage groups
• Latency: OVERHEAD (ms)
• Data transfer speed: DEVICE READ RATE (MB/s)

• Table spaces:
• Latency: OVERHEAD (ms)
• Data transfer speed: TRANSFERRATE (ms/page)

• Depends on the page size

• Default values for automatic storage table spaces are inherited from
their underlying storage group
• This is the recommended approach
• Otherwise, be careful to adjust for different page sizes!

36

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.p
erf.doc/doc/c0005051.html

OVERHEAD number-of-milliseconds Specifies the I/O controller usage and disk seek and latency
time. This value is used to determine the cost of I/O during query optimization. The value of
number-of-milliseconds is any numeric literal (integer, decimal, or floating point). If this value is
not the same for all storage paths, set the value to a numeric literal which represents the
average for all storage paths that belong to the storage group.If the OVERHEAD clause is not
specified, the OVERHEAD will be set to 6.725 milliseconds.

DEVICE READ RATE number-megabytes-per-second Specifies the device specification for the
read transfer rate in megabytes per second. This value is used to determine the cost of I/O
during query optimization. The value of number-megabytes-per-second is any numeric literal
(integer, decimal, or floating point). If this value is not the same for all storage paths, set the
value to a numeric literal which represents the average for all storage paths that belong to the
storage group. If the DEVICE READ RATE clause is not specified, the DEVICE READ RATE will be
set to the built-in default of 100 megabytes per second.

36

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Optimizer Environment Awareness

• Buffer pool size

• Sort heap size
• Used by sorts, hash join, index ANDing, hash aggregation and distincting
• Main memory pool used by column-organized processing

• Communications bandwidth
• To factor communication cost into overall cost, in DB partitioned environments

• Remote data source characteristics in a Federated environment

• Concurrency isolation level / locking

• Number of available locks

37

37

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Planning and Modelling Predicate Application

• In general, optimizer tries to apply predicates as early as possible
• Filter rows from stream to avoid unnecessary work

• However, some types of predicates can only be applied in certain
locations during query execution

• There is a hierarchy of predicate application

• The explain facility shows where predicates are applied

38

38

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Hierarchy of Predicate Application

Salary > ALL

(SELECT...

FROM...

WHERE...)

Name LIKE 'Lo%'

Residual

Predicates

Search

Arguments

(SARGs)

RDS

Data

Manager

Start/stop keys: SSN = '012-34-5678'

Index: (SSN,ID,TXID) Index

Manager

Buffer pages

Index sargable

predicates

i-sarg: TXID = 9965
(applied to all qualifying keys)

Start/stop keys

39

39

40

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Cardinality Estimation

• Cardinality = number of rows
• The optimizer estimates the number of rows processed by each

access plan operator
• Based on the number of rows in the table and the filter factors of

applied predicates.
• This is the biggest impact on estimated cost!
• Catalog statistics are used to estimate filter factors and cardinality

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Catalog Statistics

• DB2 automatically collects statistics
• Automatically sampled, if necessary
• Collected at query optimization time, if necessary
• Can be collected manually too (RUNSTATS command)

• Data characteristics
• Counts, distributions, cross-table relationships
• Used to estimate filtering of search conditions, size of intermediate result sets

• Physical characteristics
• Number of pages, clustering, index levels, etc.
• Used to estimate CPU and I/O costs

41

41

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Catalog Statistics Used by the Optimizer (1|2)

• Basic statistics
• Table statistics

• # of rows/pages/active blocks in table
• Avg. compressed row size, avg. compression ratio

• Column statistics
• # of distinct values, avg. length of data values, data range information, %

inlined

• Non-uniform distribution statistics
• N most frequent values (default 10)

• Used for equality predicates
• M quantiles (default 20)

• Used for range predicates
42

42

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Catalog Statistics Used by the Optimizer (2|2)

• Column group statistics
• # of distinct values in a group of columns
• Important for detecting correlation between columns e.g. MAKE, MODEL in

vehicle DB

• Index clustering (DETAILED index statistics)
• Used to better estimate data page fetches

• User-defined function (UDF) statistics
• Manually specify I/O & CPU costs by updating SYSSTAT.FUNCTIONS or

SYSSTAT.ROUTINES

43

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c000
5114.html

To create statistical information for user-defined functions (UDFs), update the SYSSTAT.ROUTINES catalog view.

The runstats utility does not collect statistics for UDFs. If UDF statistics are available, the optimizer can use them
when it estimates costs for various access plans. If statistics are not available, the optimizer uses default values
that assume a simple UDF.

43

44

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Cardinality Estimation – Local predicates

0 a

1 b

3 c

9 d

12 e

19 b

19 d

20 d

30 e

31 a

32 c

39 d

42 e

43 a

44 b

45 d

47 e

50 a

55 b

60 c

X YT1

Uniform distribution described by COLCARD = 5
<------------------------selectivity 1/5 = .20

T1
X BETWEEN 10 AND 50 => X >= 10 AND X <= 50

Y = 'a'

<--- IXSCAN cardinality

= 20 * [ff(x>=10) + ff(x<=50) – 1]

= 20 * (0.853 + 0.831 – 1) = 13.674 (actual: 14)

Assumes predicates are independent

<--- FETCH cardinality = 13.674 * .20 = 2.735

SELECT * FROM T1 WHERE X BETWEEN 10 AND 50 AND Y = 'a'

0 12 31 44 60

1

height 5 histogram describing non-uniform X distribution
5 10 15 20

Value

Count
ff(x>=10)

ff(x<=50)

IXSCAN

FETCH

The histogram example would actually be computed using the following
approach, assuming 5 quantiles are collected:

Histogram Descriptor :

Count Distcount Value_len Value

1 0 4 0

5 0 4 12

10 0 4 31

15 0 4 44

20 0 4 60

ff1 = ff(x<=50)

= total count of 1st 3 histogram/total cardinality +

(interpolate into 4th histogram) *

(count of 4th histogram/total cardinality)

= 15/20 + (50-44+1)/(60-44+1) * 0.25 = 0.852941

ff2 = ff(x>=10) = (1 – ff(x<10))

= (use same method as ff(x<=50)

= 1 – (10-0+1)/(12-0+1) * 0.20 = 0.830769

ff = ff1+ff2-1 = 0.68371

Cardinality = 20 * 0.68371 = 13.6742

45

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Cardinality Estimation – Local and join predicates

JOIN

SELECT * FROM T1, T2 WHERE T1.x = 7 AND T1.y = T2.y

X Y

1 A

2 B

2 C

4 D

7 E

7 F

7 G

7 H

9 I

9 J

Y

B

B

D

D

F

F

H

H

J

J

T1 T2

TYPE SEQNO COLVALUE VALCOUNT

F 1 7 4
F 2 9 2

F 3 2 2

SYSSTAT.COLDIST (X)

Selectivity (T1.x = 7): = 4/10
Using frequent value statistics

Selectivity (T1.y = T2.y):
= 1 / max(colcard(T1.y), colcard(T2.y))
= 1 / max(10,5)
= 1/10

Join predicate selectivity assumes:
Inclusion:

All values in T2.y are included in domain of T1.y
Uniformity:

Values are uniformly distributed in both columns

Result cardinality:
= Card(T1) * Card(T2) * sel(T1.x=7) * sel(T1.y=T2.y)
= 10 * 10 * 0.4 * 0.1
= 4
Actual: 4

Cardinality of T1: C(T1) = 10

Cardinality of T2: C(T2) = 10

Column cardinality of T1.Y: CC(T1.Y) = 10

Column cardinality of T2.Y: CC(T2.Y) = 5

Assuming even data distribution, there are the same number of duplicate values for each distinct value.

DC1 = C(T1)/CC(T1.Y) = 1

DC2 = C(T2)/CC(T2.Y) = 2

The column cardinality of the join result is min(CC(T1.Y),CC(T2.Y)). i.e. the number of distinct values that can occur in T1.Y and T2.Y after the
join predicate is applied.

The number of rows returned by the join is the minimal join column cardinality times the number of duplicate values that can occur for each distinct
value for each join column.

min(CC(T1.Y),CC(T2.Y)) * DC1 * DC2 =

min(CC(T1.Y),CC(T2.Y)) * (C(T1)/CC(T1.Y)) * (C(T2)/CC(T2.Y)) =

min(CC(T1.Y) ,CC(T2.Y))

----------------------------- * C(T1) * C(T2) =

CC(T1.Y) * CC(T2.Y)

1

---------------------------- * C(T1) * C(T2)

max(CC(T1.Y),CC(T2.Y))

C(T1) * C(T2) = cardinality of Cartesian product of T1 and T2

1

------------------------------- = selectivity of join predicate

max(CC(T1.Y),CC(T2.Y))

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

The explain facility – what is it?

• Internal phase of the optimizer that captures critical information used in
selecting the query access plan

• Access plan information is written to a set of tables

• External tools to format explain table contents:
• Data Server Manager Visual Explain

• GUI to render and navigate query access plans
• Common GUI for IBM data servers (Db2/z and IDS)

• db2exfmt
• Text-based output from the explain tables
• Command-line interface

46

They show the same
information

The explain facility is used to display the query access plan chosen by the query optimizer to run

an SQL statement. It contains extensive details about the relational operations used to run the

SQL statement such as the plan operators, their arguments, order of execution, and costs. Since

the query access plan is one of the most critical factors in query performance, it is important to

be able to understand the explain facility output in order to diagnose query performance

problems.

Explain information is typically used to:

▪ understand why application performance has changed

▪ evaluate performance tuning efforts

46

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Visual Explain

Operator name
Cost (timerons)

47

47

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

db2exfmt Rows

RETURN

(1)

Cost

I/O

|

3.87404

NLJOIN

(13)

125.206

5

/-------+------\

0.968511 4

IXSCAN FETCH

(14) (15)

75.0966 100.118

3 4

| /----+---\

4.99966e+06 4 1.99987e+07

INDEX: TPCD IXSCAN TABLE: TPCD

UXP_NMPK (16) PARTSUPP

75.1018

3

|

1.99987e+07

INDEX: TPCD.UXPS_PK2KSC

48

Cardinality (rows)

Operator name

(Operator ID)

Cost (timerons)

I/O (pages)

Base table cardinality

48

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Explain Facility – Query Graph

• The Query Graph produced by query rewrite can be seen in the
explain output as the optimized SQL

49

SELECT

Q8.$C0 AS "total shipping cost", (Q8.$C0 / Q8.$C1) AS "total shipping cost"

FROM

(SELECT SUM(Q7.CS_EXT_SHIP_COST), COUNT_BIG(Q7.CS_EXT_SHIP_COST)

FROM

(SELECT Q6.CS_EXT_SHIP_COST

FROM

(SELECT Q5.CS_EXT_SHIP_COST

FROM TPCDS.CATALOG_RETURNS AS Q1

RIGHT OUTER JOIN

(SELECT Q4.CS_EXT_SHIP_COST, Q4.CS_ORDER_NUMBER

FROM TPCDS.DATE_DIM AS Q2, TPCDS.CUSTOMER_ADDRESS AS Q3, TPCDS.CATALOG_SALES AS Q4

WHERE

('04/01/2001’ <= Q2.D_DATE) AND (Q2.D_DATE <= '05/31/2001') AND

(Q4.CS_SHIP_DATE_SK = Q2.D_DATE_SK) AND (Q4.CS_SHIP_ADDR_SK = Q3.CA_ADDRESS_SK) AND

(Q3.CA_STATE = 'NY')

) AS Q5

ON (Q5.CS_ORDER_NUMBER = Q1.CR_ORDER_NUMBER)

) AS Q6

) AS Q7

) AS Q8

E
X P

L A I
N I T T

O M E N O W

SELECT

Q8.$C0 AS "total shipping cost", (Q8.$C0 / Q8.$C1) AS "total shipping cost"

FROM

(SELECT SUM(Q7.CS_EXT_SHIP_COST), COUNT_BIG(Q7.CS_EXT_SHIP_COST)

FROM

(SELECT Q6.CS_EXT_SHIP_COST

FROM

(SELECT Q5.CS_EXT_SHIP_COST

FROM TPCDS.CATALOG_RETURNS AS Q1

RIGHT OUTER JOIN

(SELECT Q4.CS_EXT_SHIP_COST, Q4.CS_ORDER_NUMBER

FROM TPCDS.DATE_DIM AS Q2, TPCDS.CUSTOMER_ADDRESS AS Q3,

TPCDS.CATALOG_SALES AS Q4

WHERE

('04/01/2001’ <= Q2.D_DATE) AND (Q2.D_DATE <= '05/31/2001') AND

(Q4.CS_SHIP_DATE_SK = Q2.D_DATE_SK) AND (Q4.CS_SHIP_ADDR_SK =

Q3.CA_ADDRESS_SK) AND

(Q3.CA_STATE = 'NY')

) AS Q5

ON (Q5.CS_ORDER_NUMBER = Q1.CR_ORDER_NUMBER)

) AS Q6

) AS Q7

) AS Q8

49

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

Session code:

Please fill out your session
evaluation before leaving!
Please fill out your session
evaluation before leaving!

John Hornibrook
IBM Canada
jhornibr@ca.ibm.com

C10

50

Please fill out your session

evaluation before leaving!

John is a Senior Technical Staff Member responsible for
relational database query optimization on IBM's distributed
platforms. This technology is part of Db2 for Linux, UNIX and
Windows, Db2 Warehouse, Db2 on Cloud, IBM Integrated
Analytics System (IIAS) and Db2 Big SQL. John also works closely
with customers to help them maximize their benefits from
IBM's relational DB technology products.

50

