
1



2



3

When the SQL compiler optimizes SQL query plans, its decisions are heavily 
influenced by statistical information about the size of the database tables and indexes. 
The optimizer also uses information about the distribution of data in specific columns 
of tables and indexes if these columns are used to select rows or join tables. The 
optimizer uses this information to estimate the costs of alternative access plans for each 
query. Db2 will automatically collect statistics depending on how data changes and the 
statistical needs of queries. Statistics can also be collected manually using the 
RUNSTATS command. Statistical information is collected for specific tables, indexes 
and nicknames. The collected statistics are stored in the system catalog tables and can 
be queried using the SYSSTAT or SYSCAT catalog views.



4



5



https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.d

b2.luw.sql.ref.doc/doc/r0001072.html

PAGE_FETCH_PAIRS -

A list of pairs of integers, represented in character form. Each pair represents 

the number of pages in a hypothetical buffer, and the number of page fetches 

required to scan the table with this index using that hypothetical buffer. Zero-

length string if no data is available.

6



7



8



9



10

Column group cardinality statistics represent the number of distinct values in 

a group of columns. This statistic helps the optimizer recognize when the 

data in columns is correlated. Without it, the optimizer assumes that the data 

in columns is independent. 



11



12

-- Example query to find all the column groups for a particular table

select colgroupschema, colgroupname, g.colgroupid, colname, ordinal, 

colgroupcard

from sysstat.colgroups g, syscat.colgroupcols c

where g.colgroupid = c.colgroupid and c.tabname = ‘<tabname>’

order by 3,5



https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.admin.p

erf.doc/doc/c0055085.html

The optimizer uses column group statistics to account for statistical correlation when 

estimating the combined selectivity of multiple predicates and when computing the number of 

distinct groupings for operations that group data such as GROUP BY or DISTINCT. Gathering 

column group statistics can be automated through the automatic statistics collection feature in 

Db2. Enabling or disabling the automatic collection of column group statistics is done by using 

the auto_cg_stats database configuration parameter. To enable this function, issue the 

following command: update db cfg for dbname using auto_cg_stats on

The automatic collection of column group statistics will generate a profile describing the 

statistics that need to be collected. If a user profile does not exist, the background statistics 

collection will initially perform an automatic discovery of pair-wise column group statistics 

within the table and set a statistics profile. After the discovery is completed, statistics are 

gathered on the table using the existing statistics profile feature. The set of column groups 

discovered is preserved across subsequent discoveries.

If a statistics profile is already manually set, it will be used as is and the discovery is not 

performed. The automatically generated statistics profile can be used together with any 

PROFILE option of the RUNSTATS command. If the profile is updated using the UPDATE 

PROFILE option, any further discovery is blocked on the table, but the set of column group 

statistics already set in the profile will continue to be collected automatically as well as with a 

manual RUNSTATS that includes the USE PROFILE option.

The UNSET PROFILE command can be used to remove the statistics profile to restart the 

discovery process.

13



To disable this feature, issue the following command: update db cfg for dbname using 

auto_cg_stats off

Disabling this feature will prevent any further discovery, but the statistic profiles will persist and 

will continue to be used. If there is a need to remove the profile, use the UNSET PROFILE 

option of RUNSTATS.

13



14



15



16

Start by understanding the underlying schema used by the query. In this 

example, it is a star schema, which has characteristics that can sometimes 

pose query optimization challenges. You can use statistical views to capture 

more complex relationships across the fact and dimension tables. This 

makes the optimizer aware of skew in the fact table foreign key columns and 

that the fact table foreign keys only contain a subset of the dimension 

primary key values.



17



18



19

A statistical view is created by first creating a view and then enabling it for 

optimization using the ALTER VIEW statement. RUNSTATS is then run on the 

statistical view, populating the system catalog tables with statistics for the view. 



20



21



22



23



24



25



26



27



28



29



30



31



32



33



34



35



36



37



38



39



40



41



42



43



44



For the following 4 rows of data, SUB_COUNT is 5 and 

SUB_DELIM_LENGTH is 1

R1: 'database simulation analytical business intelligence’

R2: 'simulation model fruit fly reproduction temperature’

R3: 'forestry spruce soil erosion rainfall’

R4: 'forest temperature soil precipitation fire'

45



46



John is a Senior Technical Staff Member responsible for relational database 

query optimization on IBM's distributed platforms. This technology is part of 

Db2 for Linux, UNIX and Windows, Db2 Warehouse, Db2 on Cloud, IBM 

Integrated Analytics System (IIAS) and Db2 Big SQL. John also works closely 

with customers to help them maximize their benefits from IBM's relational DB 

technology products. 

47


