
Optimal query access plans are essential for good data server performance, and it

is the query optimizer's job to choose the best one. However, occasionally no

amount of statistics or tuning is enough to get the access plan you want. Or your

application is effectively down, due to a poorly performing query, and there isn't time

to implement best practices. When these situations arise, Db2 optimization profiles

and guidelines can be used to correct the access plan and get your application

performing well again, quickly. Optimization profiles can specify various aspects of

an access plan, can control automatic query rewriting or can control the optimizer's

plan search space. Guidelines can be specified with or without modifying your

application. This presentation will show you what options are available and how to

use them effectively.

1

2

3

The Db2 data server supports an even more direct way to influence access plans

using optimization profiles. Optimization profiles allow you to specify access plan

details such as base access and join methods and join order. For example, you can

specify that access to a particular table should use a particular index or you can

specify that two tables should be joined using the hash join method. Optimization

profiles also allow you to control query rewrite optimizations such transforming

certain types of subqueries to joins. You can specify the base table access

methods, join methods, and join order for the entire access plan, or just a subset of

the access plan.

Optimization profiles are a powerful tool for controlling access plans; however, they

should be used with caution. Optimization profiles prevent access plans from

adjusting to changes in your data and your environment. While this does result in

more stable access plans, it may be a bad approach when used for extended

periods of time, because the performance improvements resulting from better

access plans will never be realized. Optimization profiles are best used for

exceptional situations when the tuning actions described previously in the

presentation are unsuccessful in improving or stabilizing access plans.

4

An optimization profile is specified as an XML document that you create and

store in the SYSTOOLS.OPT_PROFILE table.

An optimization profile contains optimization guidelines that specify the

access plan details. An optimization profile can contain optimization

guidelines for one or more SQL statements. The SQL statement text is

stored in the optimization profile along with the optimization guidelines.

When an optimization profile is in effect for your application, each SQL

statement compiled by your application will be matched to the SQL

statements specified in the optimization profile. When a matching SQL

statement is found in the optimization profile, the SQL compiler will use the

optimization guidelines for that SQL statement while optimizing it.

The term ‘optimization profile’ refers to the entire XML document that is stored in

SYSTOOLS.OPT_PROFILE. An ‘optimization guideline’ refers to sections of the

optimization profile represented by the <OPTGUIDELINES> element. An

optimization guideline can exist on its own when it is specified as a comment on an

SQL statement. More on this later.

5

6

This sample shows an entire optimization profile document.

The first <OPTGUIDELINES> element specifies which MQTs the optimizer

should consider. It doesn’t mean that these MQTs will be forced to be used,

but they will be the only ones considered by the optimizer.

The <STMTPROFILE> section represents a guideline for a specific SQL

statement. The SQL statement text is included in the <STMTKEY> element

because it will be matched to an SQL statements that are compiled when

this optimization profile is in effect. The <OPTGUIDELINES> element

following <STMTKEY> represents an access path hint that will be applied to

this SQL statement.

https://www.ibm.com/docs/en/db2/11.5?topic=guidelines-embedded-optimization

General rules when using embedded optimization guidelines:

Embedded optimization guidelines can only be applied to Data Manipulation

Language (DML) statements: the SELECT, INSERT, UPDATE, DELETE, and

MERGE commands. The optimizer will ignore such comments on other types of

statements. No error or warning will be provided.

The embedded optimization guideline must be provided after the SQL portion of

the statement. They cannot appear inside subselects. However, other types of

comments can be provided at the end of the statement before or after the

optimization guideline.

The optimizer will look for one embedded optimization guideline comment for

every DML statement. If there are multiple embedded optimization guideline

comments, all of them are ignored and a warning is produced.

The optimization guideline must be written in well-formed XML. It cannot include

extraneous text.

7

8

There are 3 main types of optimization guidelines – those that specify the

access plan and those that control query rewrites/transformations.

The 3rd type is next …

9

The 3rd type of optimization guideline is ‘general’. It specifies options that

control the query optimizer, such as the degree of parallelism and the query

optimization level.

This example shows an optimization guideline that specifies to use index

I_SUPPKEY to access “Tpcd”.SUPPLIERS S in the outer sub-select. The TABLE

attribute is used to refer to the table. Tables are referenced using their ‘exposed’

name as described by the SQL standard.

10

This example shows a join optimization guideline. The tables to be joined are

contained within the <NLJOIN> element. The first table is the outer of the join and

the second is the inner.

11

Join elements can be nested within join elements, provided that the tables to be

joined are within the same sub-select in the ‘optimized’ or transformed/rewritten

SQL. This is because the access plan is built based on an automatically rewritten

version of the original statement, which could be very different than the original.

More on this later.

12

13

The term table reference is used to mean any table, view, table expression,

or the table which an alias references in an SQL statement or view definition.

An optimization guideline can identify a table reference using either its

exposed name in the original statement or the unique correlation name that

is associated with the table reference in the optimized statement.

A table reference is identified by using the exposed name of the table. The

exposed name is specified in the same way that a table would be qualified in

an SQL statement.

The rules for specifying SQL identifiers also apply to the TABLE attribute

value of an optimization guideline. The TABLE attribute value is compared to

each exposed name in the statement. Only a single match is permitted in

this Db2® release. If the TABLE attribute value is schema-qualified, it

matches any equivalent exposed qualified table name. If the TABLE attribute

value is unqualified, it matches any equivalent correlation name or exposed

table name. The TABLE attribute value is therefore considered to be

implicitly qualified by the default schema that is in effect for the statement.

This is an example of an invalid optimization guideline because all the tables to be

joined aren’t in the same derived tables, or sub-select. But there are ways to handle

this …

14

The preferred option for referencing derived tables is to use the TABID attribute to

specify the optimized SQL correlation name.

15

An alternative to using TABID is to rewrite the SQL statement so that the derived

table is an inline view. Use the TABLE attribute to reference the inline view. This

only works for simple inline views that have not been changed by automatic query

transformations.

16

Optimization guidelines can use extended syntax to identify table references that

are embedded in views. The extended syntax for identifying table references in

views is a series of exposed names separated by a slash character. The value of

the TABLE attribute A/“DBGuy".V1/A illustrates the extended syntax. The last

exposed name in the sequence (A) identifies the table reference that is a target of

the optimization guideline. The first exposed name in the sequence (A) identifies the

view that is directly referenced in the original statement. The exposed name or

names in the middle (“DBGuy".V1) pertain to the view references along the path

from the direct view reference to the target table reference. The rules for referring to

exposed names from optimization guidelines, described in the previous section,

apply to each step of the extended syntax.

Had the exposed name of the EMPLOYEE table reference in the view been unique

with respect to all tables that are referenced either directly or indirectly by the

statement, the extended name syntax would not be necessary.

Extended syntax can be used to target any table reference in the original statement,

SQL function, or trigger.

17

Extended syntax is not necessary if all exposed names for table references are

unique.

18

An optimization guideline is considered invalid and is not applied if it matches

multiple exposed or extended names.

The optimizer considers the IXSCAN access request ambiguous, because the

exposed name EMPLOYEE is not unique within the definition of view V1.

To eliminate the ambiguity, the view can be rewritten to use unique correlation

names, or the TABID attribute can be used. Table references that are identified by

the TABID attribute are never ambiguous, because all correlation names in the

optimized statement are unique.

19

Each of the IXSCAN elements references the “Tpcd".PARTS table in the main

subselect.

When two or more guidelines refer to the same table, only the first is applied; all

other guidelines are ignored, and an error is returned.

20

This particular query rewrite optimization guideline specifies that the list of constants

in the predicate P_SIZE IN (35, 36, 39, 40) should be transformed into a table

expression. This table expression would then be eligible to drive an indexed nested-

loop join access to the PARTS table in the main subselect. The TABLE attribute is

used to identify the target IN-LIST predicate by indicating the table reference to

which this predicate applies. If there are multiple IN-LIST predicates for the

identified table reference, the INLIST2JOIN rewrite request element is considered

ambiguous and is ignored.

In such cases, a COLUMN attribute can be added to further qualify the target IN-

LIST predicate.

21

https://www.ibm.com/docs/en/db2/11.5?topic=wtqop-using-reopt-bind-option-input-

variables-in-complex-queries

REOPT

Specifies whether to have Db2 optimize an access path using values for host variables,

parameter markers, global variables, and special registers. Valid values are:

NONE

The access path for a given SQL statement containing host variables, parameter

markers, global variables, or special registers will not be optimized using real values for

these variables. The default estimates for the these variables will be used instead, and this

plan is cached and used subsequently. This is the default behavior.

ONCE

The access path for a given SQL statement will be optimized using the real values of

the host variables, parameter markers, global variables, or special registers when the query

is first executed. This plan is cached and used subsequently.

ALWAYS

The access path for a given SQL statement will always be compiled and reoptimized

using the values of the host variables, parameter markers, global variables, or special

registers known at each execution time.

22

23

https://www.ibm.com/docs/en/db2/11.5?topic=profiles-configuring-data-

server-use-optimization-profile

After an optimization profile is created and its contents are validated against

the current optimization profile schema (COPS), the contents must be

associated with a unique schema-qualified name and stored in the

SYSTOOLS.OPT_PROFILE table.

Another way to add an optimization profile is to just insert it in the

SYSTOOLS.OPT_PROFILE table using an INSERT statement. However,

embedded quotes need to be doubled and the length of the profile will be limited by

the maximum size of a string literal.

24

25

An optimization profile needs to be put into effect for the connection/session

or package.

An optimization profile can be specified for a new package using the

OPTPROFILE bind option. It can be specified for existing packages by using

the ALTER PACKAGE statement.

An optimization profile can be put into effect for dynamic SQL for the current

connection/session using the CURRENT OPTIMIZATION PROFILE special

register.

An optimization profile has a 2-part name. The name can be specified with a

literal, host variable, or special register. The name specified is the name

entered into the CURRENT OPTIMIZATION PROFILE special register. If the

specified optimization-profile-name is unqualified, the value of the

CURRENT DEFAULT SCHEMA register is used as the implicit qualifier. The

default value of the special register is null.

•If the value of the register specifies the name of an existing optimization profile, the

specified optimization profile is used when preparing subsequent dynamic DML

statements.

•If the value of the register is null, the optimization profile specified by the

OPTPROFILE bind option, if any, is used when preparing subsequent dynamic DML

statements.

•If the value of the register is null, and the OPTPROFILE bind option is not set, no

optimization profile is used when preparing subsequent dynamic DML statements.

•If the value of the register is the empty string, then no optimization profile is used

when preparing subsequent dynamic DML statements, regardless of whether the

OPTPROFILE bind option is set.

•Subsequent changes to CURRENT DEFAULT SCHEMA do not have any effect on

the optimization profile. The CURRENT OPTIMIZATION PROFILE register value is

set with the two part name that is in effect at the time SET CURRENT

OPTIMIZATION PROFILE statement is evaluated. Only another SET CURRENT

OPTIMIZATION PROFILE statement can change the optimization profile that is

used.

26

The connect procedure provides you a way to allow applications in your

environment to implicitly execute a specific procedure upon connection. This

procedure can allow you to customize an application environment to a database

from a central point of control. For example, in the connect procedure you can set

special registers such as CURRENT_PATH to non-default values by invoking the

SET CURRENT PATH statement. This new CURRENT_PATH value will now be the

effective default CURRENT_PATH for all applications.

Any procedure created in the database that conforms to the naming and parameter

restrictions can be used as the connect procedure for that database. The

customization logic is provided by you in the form of a procedure created in the

same database and is allowed to do any of the usual actions of a procedure such as

issue SQL statements.

https://www.ibm.com/docs/en/db2/11.5?topic=databases-customizing-application-

environment-using-connect-procedure

27

https://www.ibm.com/docs/en/db2/11.5?topic=profiles-modifying-optimization-profile

When you make a change to an optimization profile there are certain steps that

need to be taken in order for the changes in the optimization profiles to take effect.

When an optimization profile is referenced, it is compiled and cached in memory;

therefore, these references must also be removed. Use the FLUSH OPTIMIZATION

PROFILE CACHE statement to remove the old profile from the optimization profile

cache. The statement also invalidates any statement in the dynamic plan cache that

was prepared by using the old profile (logical invalidation).

28

STMTNO should be the line number in the source code of the CREATE

PROCEDURE, relative to the beginning of the procedure statement (line number 1)

SELECT STMTNO, SEQNO, SECTNO, TEXT

FROM SYSCAT.STATEMENTS AS S,

SYSCAT.ROUTINEDEP AS D,

SYSCAT.ROUTINES AS R

WHERE PKGSCHEMA = BSCHEMA

AND PKGNAME = BNAME;

AND BTYPE = 'K'

AND R.SPECIFICNAME = D.SPECIFICNAME

AND R.ROUTINESCHAME = D.ROUTINESCHEMA

AND ROUTINENAME = ?

AND ROUTINESCHEMA = ?

AND PARM_COUNT = ?

ORDER BY STMTNO

29

Embedded optimization guidelines override identical optimization guidelines

specified in the global section of an optimization profile.

30

Optimization guidelines provided by way of a statement profile section of an

optimization profile take precedence over embedded optimization guidelines. That

is, if the CURRENT OPTIMIZATION PROFILE register contains the name of an

optimization profile, and the specified optimization profile contains a matching

statement profile for a statement with embedded optimization guidelines, then the

embedded optimization guidelines are ignored by the optimizer.

31

32

The statement key identifies the application statement to which statement-level

optimization guidelines apply. The matching method can be specified using the

STMTMATCH element in the optimization profile.

When the data server compiles an SQL statement and finds an active optimization

profile, it attempts to match each statement key in the optimization profile with the

current compilation key. The type of matching depends if exact or inexact matching

is specified in the optimization profile. You can specify which type of matching to

use by specifying the STMTMATCH element in the optimization profile. By setting

the EXACT attribute to TRUE or FALSE, you can enable either exact or inexact

matching. If you do not specify the STMTMATCH element, exact matching is

automatically enabled.

With inexact matching, literals, host variables, and parameter markers are ignored

when the statement text from the statement key and compilation key is being

matched.

Exact and inexact matching operates as follows:

Matching is case insensitive for keywords. For example, select can match

SELECT.

Matching is case insensitive for nondelimited identifiers. For example, T1 can

match t1.

Delimited and nondelimited identifiers can match except for one case. For

example, T1 and "T1" will match, and so will t1 and "T1". However, t1 will not match

with "t1".

33

Inexact matching is applied to both SQL and XQuery statements. However, string

literals that are passed as function parameters representing SQL or XQuery

statements or statement fragments, including individual column names are not

inexactly matched. XML functions such as XMLQUERY, XMLTABLE, and

XMLEXISTS that are used in an SQL statement are exactly matched. String literals

could contain the following items:

• A whole statement with SQL embedded inside XQuery, or XQuery embedded

inside an SQL statement

• An identifier, such as a column name

• An XML expression that contains a search path

For XQuery, inexact matching ignores only the literals. The following literals are

ignored in inexact matching with some restrictions on the string literals:

• decimal literals

• double literals

• integer literals

• string literals that are not input parameters for functions: db2-fn:sqlquery, db2-

fn:xmlcolumn, db2-fn:xmlcolumn-contains

34

This example shows how inexact matching can be specified globally for all

statements executed when the profile is in effect, or locally for a specific SQL

statement. The global setting is EXACT=‘FALSE’, so exact matching is not done for

statement S1. Statement S2 has its own STMTMATCH element with

EXACT=‘TRUE’ so its text will be matched exactly.

35

36

Matching is case insensitive for keywords. For example, select can match SELECT.

Matching is case insensitive for nondelimited identifiers. For example, T1 can match

t1.

Delimited and nondelimited identifiers can match except for one case. For example,

T1 and "T1" will match, and so will t1 and "T1". However, t1 will not match with "t1".

37

Optimization profiles can have different registry variable values applied to a specific

query statement or to many query statements used in an application.

Setting registry variables in an optimization profile can increase the flexibility you

have in using different query statements for different applications. When you use the

db2set command to set registry variables, the registry variable values are applied to

the entire instance. In optimization profiles, the registry variable values apply only to

the statements specified in the optimization profile. By setting registry variables in

an optimization profile, you can tailor specific statements for applications without

worrying about the registry variable settings of other query statements.

Only a subset of registry variables can be set in an optimization profile.

See here for the full list:

https://www.ibm.com/docs/en/db2/11.5?topic=profiles-sql-compiler-registry-

variables-in-optimization-profile

•TBSCAN, IXSCAN, LPREFETCH, IXAND, IXOR, XISCAN, and XANDOR

These elements correspond to Db2® data access methods, and can only be applied

to local tables that are referenced in a statement. They cannot refer to nicknames

(remote tables) or derived tables (the result of a subselect).

•ACCESS

This element, which causes the optimizer to choose the access method, can be

used when the join order (not the access method) is of primary concern. The

ACCESS element must be used when the target table reference is a derived table.

For XML queries, this element can also be used with attribute TYPE = XMLINDEX

to specify that the optimizer is to choose XML index access plans.

38

•NLJOIN, MSJOIN, and HSJOIN

These elements correspond to the nested-loop, merge, and hash join methods,

respectively.

•JOIN

This element, which causes the optimizer to choose the join method, can be used

when the join order is not of primary concern.

All join request elements contain two sub-elements that represent the input tables of

the join operation. Join requests can also specify an optional FIRST attribute.

39

•IN-LIST-to-join query rewrite requests

A INLIST2JOIN query rewrite request element can be used to enable or disable the

IN-LIST predicate-to-join rewrite transformation. It can be specified as a statement-

level optimization guideline or a predicate-level optimization guideline. In the latter

case, only one guideline per query can be enabled. The INLIST2JOIN request

element is defined by the complex type inListToJoinType.

•NOT-EXISTS-to-anti-join query rewrite requests

The NOTEX2AJ query rewrite request element can be used to enable or disable the

NOT-EXISTS predicate-to-anti-join rewrite transformation. It can be specified as a

statement-level optimization guideline only. The NOTEX2AJ request element is

defined by the complex type notExistsToAntiJoinType.

•NOT-IN-to-anti-join query rewrite requests

The NOTIN2AJ query rewrite request element can be used to enable or disable the

NOT-IN predicate-to-anti-join rewrite transformation. It can be specified as a

statement-level optimization guideline only. The NOTIN2AJ request element is

defined by the complex type notInToAntiJoinType.

•Subquery-to-join query rewrite requests

The SUBQ2JOIN query rewrite request element can be used to enable or disable

the subquery-to-join rewrite transformation. It can be specified as a statement-level

optimization guideline only. The SUBQ2JOIN request element is defined by the

complex type subqueryToJoinType.

40

https://www.ibm.com/docs/en/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024582.html
https://www.ibm.com/docs/en/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024615.html
https://www.ibm.com/docs/en/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024616.html
https://www.ibm.com/docs/en/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024613.html

If OPT_PROF is missing, that means that an optimization profile wasn’t in effect

when the statement was explained. Check the CURRENT OPTIMIZATION

PROFILE special register or OPTPROFILE bind option.

If OPT_PROF appears but STMTPROF doesn’t, and you expected one to be in

effect, then the SQL statement text probably didn’t match.

41

Some explain diagnostic messages for optimization profiles provide the line number

relative to the start of the XML document as well as a character number relative to

the beginning on the specified line.

42

43

John is a Senior Technical Staff Member responsible for

relational database query optimization on IBM's

distributed platforms. This technology is part of Db2 for

Linux, UNIX and Windows, Db2 Warehouse, Db2 on

Cloud, IBM Integrated Analytics System (IIAS), IBM

Db2 Analytics Accelerator (IDAA) and Db2 Big SQL.

John also works closely with customers to help them

fully realize the benefits of IBM's relational DB

technology products.

44

