A DB2 USER GROUP

L Tridex

p—
—
.-

-
‘ f
:
’ [

Optimal query access plans are essential for good data server performance, and it
is the query optimizer's job to choose the best one. However, occasionally no
amount of statistics or tuning is enough to get the access plan you want. Or your
application is effectively down, due to a poorly performing query, and there isn't time
to implement best practices. When these situations arise, Db2 optimization profiles
and guidelines can be used to correct the access plan and get your application
performing well again, quickly. Optimization profiles can specify various aspects of
an access plan, can control automatic query rewriting or can control the optimizer's
plan search space. Guidelines can be specified with or without modifying your
application. This presentation will show you what options are available and how to
use them effectively.



Session Objectives

* Optimization profile structure and syntax
* Access plan optimization guidelines

* Query rewrite optimization guidelines

* Installation and activation

* Optimization guidelines embedded in SQL
* Diagnosing optimization profile problems

Tridex

A DB2 USER GROUP




Optimization profiles Tridex,,

* More commonly known as ‘hints’

* Ability to specify access plan details
* Index scan, join method, join order, etc.

* Ability to control statement optimization
* Can control both query rewrite optimization and access plan optimization

* Can be put into effect without editing application code
* Compose optimization profile, add to DB, rebind targeted packages

* Should only be used after all other tuning options exhausted

The Db2 data server supports an even more direct way to influence access plans
using optimization profiles. Optimization profiles allow you to specify access plan
details such as base access and join methods and join order. For example, you can
specify that access to a particular table should use a particular index or you can
specify that two tables should be joined using the hash join method. Optimization
profiles also allow you to control query rewrite optimizations such transforming
certain types of subqueries to joins. You can specify the base table access
methods, join methods, and join order for the entire access plan, or just a subset of
the access plan.

Optimization profiles are a powerful tool for controlling access plans; however, they
should be used with caution. Optimization profiles prevent access plans from
adjusting to changes in your data and your environment. While this does result in
more stable access plans, it may be a bad approach when used for extended
periods of time, because the performance improvements resulting from better
access plans will never be realized. Optimization profiles are best used for
exceptional situations when the tuning actions described previously in the
presentation are unsuccessful in improving or stabilizing access plans.




Optimization profiles: anatomy Tridex,,

An XML document storedin a special system table
* Elements and attributes understood as explicit optimization guidelines/hints

* Composed and validated with an XML schema
sqllib/misc/DB20ptProfile.xsd

Profile Header (exactly one)
* Meta data and processing directives

Global optimization guidelines (at most one)
* Applies to all statements for which profile is in effect
* E.g. eligible MQTs guideline defining MQTs to be considered for routing
 Statement-level optimization guidelines (zero or more)
* Applies to a specific statement for which profile is in effect
+ Specifies aspects of desired access plan

An optimization profile is specified as an XML document that you create and
store in the SYSTOOLS.OPT_PROFILE table.

An optimization profile contains optimization guidelines that specify the
access plan details. An optimization profile can contain optimization
guidelines for one or more SQL statements. The SQL statement text is
stored in the optimization profile along with the optimization guidelines.
When an optimization profile is in effect for your application, each SQL
statement compiled by your application will be matched to the SQL
statements specified in the optimization profile. When a matching SQL
statement is found in the optimization profile, the SQL compiler will use the
optimization guidelines for that SQL statement while optimizing it.




Profiles vs. guidelines Tridex

* Optimization profile:
* Refers to the entire XML document that can contain various types of
optimization guidelines for one or more SQL statements
* |dentified by the <OPTPROFILE> element
* Stored in SYSTOOLS.OPT_PROFILE

* Optimization guidelines
* Refers to a portion of the optimization profile that provides hints or guidelines
for specific aspects of query optimization
* |dentified by the <OPTGUIDELINES>element

* Can be specified as an SQL statementcomment

The term ‘optimization profile’ refers to the entire XML document that is stored in
SYSTOOLS.OPT_PROFILE. An ‘optimization guideline’ refers to sections of the
optimization profile represented by the <OPTGUIDELINES> element. An
optimization guideline can exist on its own when it is specified as a comment on an
SQL statement. More on this later.




Sample optimization profile Tridex

<?xml version="1.0" encoding="UTF-8"?>
<OPTPROFILE VERSION="11.5.0">
<]~
Global optimization guidelines section
Optional but at most one

Use CDATA to prevent > and < from
being interpreted by the XML parser

Statement profile section
Zero or more
-

<STMTKEY SCHEMA="TPCD">
<I[CDATA[SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.5_COMMENT FROM PARTS P, SUPPLIERS S, PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY AND S.S_SUPPKEY = PS.PS_SUPPKEYAND PP_SIZE = 39
AND PP_TYPE = 'BRASS'AND S.S_NATION ='MOROCCO’ AND S.S_NATION IN (MOROCCO’, 'SPAIN’)
AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST) FROM PARTSUPP PS1, SUPPLIERS S1
WHERE PP_PARTKEY = PS1.PS_PARTKEY AND S1.8_SUPPKEY = PS1.PS_SUPPKEY AND S1.S_NATION =S.S_NATION)]}>
</STMTKEY>

</OPTPROFILE>

This sample shows an entire optimization profile document.

The first <OPTGUIDELINES> element specifies which MQTs the optimizer
should consider. It doesn’t mean that these MQTs will be forced to be used,
but they will be the only ones considered by the optimizer.

The <STMTPROFILE> section represents a guideline for a specific SQL
statement. The SQL statement text is included in the <STMTKEY> element
because it will be matched to an SQL statements that are compiled when
this optimization profile is in effect. The <OPTGUIDELINES> element
following <STMTKEY> represents an access path hint that will be applied to
this SQL statement.




Embedded optimization guidelines Tridex,,

* Optimization guidelines can be specified along with the SQL statement
in an SQL comment

* Only one set of guidelines can appear in a /* */ comment after the
entire SQL statement

* Supported for static and dynamic SQL and SQL/PL procedures

* Enabled by default in Db2 11.1
* Must set registry variable DB2_OPTPROFILES=ON in prior releases

SELECT S.S_NAME FROM TPCD.SUPPLIER S WHERE S_NAME = ‘XYZ CORP’
/* <OPTGUIDELINES><IXSCAN TABLE='S’ INDEX="S_IX1’/></OPTGUIDELINES> */

* This presentation uses embedded guidelines in most examples

https://www.ibm.com/docs/en/db2/11.5?topic=guidelines-embedded-optimization
General rules when using embedded optimization guidelines:

Embedded optimization guidelines can only be applied to Data Manipulation
Language (DML) statements: the SELECT, INSERT, UPDATE, DELETE, and
MERGE commands. The optimizer will ignore such comments on other types of
statements. No error or warning will be provided.

The embedded optimization guideline must be provided after the SQL portion of
the statement. They cannot appear inside subselects. However, other types of
comments can be provided at the end of the statement before or after the
optimization guideline.

The optimizer will look for one embedded optimization guideline comment for
every DML statement. If there are multiple embedded optimization guideline
comments, all of them are ignored and a warning is produced.

The optimization guideline must be written in well-formed XML. It cannot include
extraneous text.




Optimization Guidelines (1]2) Tridex

* Access plan guidelines

* Base access request
* Method to access a table e.g. TBSCAN, IXSCAN

* Join request
* Method and sequence for performing a join e.g. HSJOIN, NLJOIN, MSJOIN
* IXAND star joins

* Query rewrite guidelines

* IN-list to join

* Subquery to join

* NOT EXISTS subquery to anti-join

* NOT IN subquery to anti-join

There are 3 main types of optimization guidelines — those that specify the
access plan and those that control query rewrites/transformations.

The 3 type is next ...




Optimization Guidelines (2 2) Tridex

* General optimization guidelines
* REOPT (ONCE/ALWAYS/NONE)
* Same as REOPT bind option
DEGREE
* Intra-partition query parallelism degree
* QRYOPT
* Query optimization level
* RTS
* Real-time statistics, enable/disable, timeout time
* MQT choices
* Materialized query table options

The 3" type of optimization guideline is ‘general’. It specifies options that
control the query optimizer, such as the degree of parallelism and the query
optimization level.




Access Plan Optimization Guidelines Tridex

* Example:
SELECTS.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT
FROM “Tpcd”.PARTS, “Tpcd”.SUPPLIERSS, “Tpcd”.PARTSUPP PS
WHERE
P_PARTKEY = PS.PS_PARTKEYAND S.S_SUPPKEY=PS.PS_SUPPKEYAND P_SIZE=39 AND P_TYPE = ‘BRASS’
PS.PS SUPPLYCOST =
(SELECT MIN(PS1.PS SUPPLYCOST)
FROM "Tpcd".PARTSUPP PS1, "Tpcd".SUPPLIERSS1
WHERE “Tpcd“.PARTS.P_PARTKEY=PS1.PS_PARTKEY AND
S1.S SUPPKEY=PS1.PS SUPPKEYAND S1.S NATION =S.S_NATION)
ORDER BY S.S_NAME
/* <OPTGUIDELINES><IXSCAN TABLE="S’ INDEX="I_SUPPKEY’/></OPTGUIDELINES> */

* Choose an index access using index ‘|_SUPPKEY’ for access to SUPPLIERS table in main sub-select
* Don’t specify an index qualifier/schemal! (It will not be recognized)

* Table is referenced using correlation name ‘S’
* TABLE attribute must reference the ‘exposed’ name

10

This example shows an optimization guideline that specifies to use index
|_SUPPKEY to access “Tpcd”.SUPPLIERS S in the outer sub-select. The TABLE
attribute is used to refer to the table. Tables are referenced using their ‘exposed’
name as described by the SQL standard.

10



Access Plan Optimization Guidelines

* Example:
SELECT S.S_NAME, S.S_ADDRESS, 5.5_PHONE, S.5_COMMENT

FROM "Tped".PARTS, "Tped".SUPPLIERS S, "Tpced™.PARTSUPP PS

WHERE P_PARTKEY = PS.PS_PARTKEY AND 5.5 _SUPPKEY = PS.PS_SUPPKEY AND

P_SIZE = 39 AND P_TYPE ='BRASS’
PS.PS_SUPPLYCOST =
(SELECT MIN(PS1.PS_SUPPLYCOST)
FROM "Tpcd".PARTSUPP PS1, "Tpcd". SUPPLIERS 51
WHERE “Tpcd“.PARTS.P_PARTKEY = PS1.PS_PARTKEY AND
$1.5_SUPPKEY = PS1.PS_SUPPKEY AND
51.5_NATION =S5.5_NATION)
ORDER BY 5.5 NAME
/* <OPTGUIDELINES>
<NUOIN>
<IXSCAN TABLE=""Tpcd”.Parts’/>
<IXSCAN TABLE="PS" />
< | .|_|.’3 N>
</OPTGUIDELINES> */

* Join requests contains 2 elements — inner and outer
* Elements can be base accesses or other join requests

Tridex

A DB2 USER GROUP

Index name not provided so optimizer
chooses based on cost

11

This example shows a join optimization guideline. The tables to be joined are
contained within the <NLJOIN> element. The first table is the outer of the join and

the second is the inner.

11



Tridex

Nesting join requests A DB2 USER GROUP
MSJOIN
* Example
<OPTGUIDELINES> NLJOIN IXSCAN
<MSJOIN> /\*
<NLJOIN>

IXSCAN IXSCAN
<IXSCAN TABLE=""Tpcd".Parts’/> i i

<IXSCAN TABLE="PS" />
</NUOIN>

<IXSCAN TABLE='S'/> Nested loop join is on outer of merge scan join

* Nested access request elements inside a join request must reference
</MSIOIN> tables in the same FROM clause of the optimized statement

</OPTGUIDELINES> *(more on this later)

* Query rewrite optimization guidelines, as well as general optimization
guidelines, can affect the optimized statement.

12

Join elements can be nested within join elements, provided that the tables to be
joined are within the same sub-select in the ‘optimized’ or transformed/rewritten
SQL. This is because the access plan is built based on an automatically rewritten
version of the original statement, which could be very different than the original.
More on this later.

12



Forming table references

2 methods

* Reference ‘exposed’ name in the original SQL statement
* Use ‘TABLE’ attribute
* Rulesfor specifying SQL identifiers apply to “TABLE’ attribute
* Reference correlation name in the optimized SQL statement
* Use ‘TABID’ attribute
* ‘Optimized’ SQL is the semantically equivalent version of the statement after is has been optimized by query rewrite
* Use the explain facility to get the optimized SQL statement
* NOTE: There is no guarantee that correlation names in the optimized SQL statement are stable across newreleases

Table references must refer to a single table or they are ignored
* i.e. no ambiguous references

Unqualified table references are implicitly qualified by the current schema

If both “TABLE” and ‘TABID’ are specified, they must refer to the same table or they are
ignored.

Use ‘TABID’ to reference derived tables

Tridex

A DB2 USER GROUP

13

The term table reference is used to mean any table, view, table expression,
or the table which an alias references in an SQL statement or view definition.
An optimization guideline can identify a table reference using either its
exposed name in the original statement or the unique correlation name that
is associated with the table reference in the optimized statement.

A table reference is identified by using the exposed name of the table. The
exposed name is specified in the same way that a table would be qualified in
an SQL statement.

The rules for specifying SQL identifiers also apply to the TABLE attribute
value of an optimization guideline. The TABLE attribute value is compared to
each exposed name in the statement. Only a single match is permitted in
this Db2® release. If the TABLE attribute value is schema-qualified, it
matches any equivalent exposed qualified table name. If the TABLE attribute
value is unqualified, it matches any equivalent correlation name or exposed
table name. The TABLE attribute value is therefore considered to be
implicitly qualified by the default schema that is in effect for the statement.

13



Referencing derived tables Tridex

* Example

SELECT S.S_NAME, PS.PS_AVAILQTY, P.P_NAME

FROM TPCD.SUPPLIER S INNER JOIN TPCD.PARTSUPP PS
ON S.S_SUPPKEY = PS.PS_SUPPKEY
LEFT OUTER JOIN TPCD.PART P

ON P.P_PARTKEY = PS.PS_PARTKEY

* This guideline is invalid because the inner join between SUPPLIER and PARTSUPP is
in a separate derived table :

<OPTGUIDELINES>
<HSJOIN>
<IXSCAN TABLE="P"/>
<HSJOIN>
<IXSCAN TABLE="S" />
<IXSCAN TABLE="PS"/>
</HSJOIN>
</HSJOIN>
</OPTGUIDELINES>

14

This is an example of an invalid optimization guideline because all the tables to be
joined aren’t in the same derived tables, or sub-select. But there are ways to handle
this ...

14



Tridex

Referencing derived tables A DB2 USER GROUP
* Option 1: Reference derived table using TABID and optimized SQL correlation
name

* Doesn’t require modifying the SQL text
* But optimized SQL correlation names aren’t stable across releases

<OPTGUIDELINES> SELECT Q3.S_NAME AS"S_NAME", Q3.PS_AVAILQTY AS
<HSJOIN> . "PS_AVAILQTY", Q4.P_NAME AS "P_NAME"
<IXSCAN TABLE="P"/> FROM
<ACCESS TABID="Q3" /> (SELECT Q2.PS_AVAILQTY, Q2.PS_PARTKEY, Q1.5_NAME
</HSJOIN> FROM
<E|§(JE%IR]N> TABLE="S" /> TPCD.SUPPLIER AS Q1,
<IXSCAN TABLE="PS"/> VJEESEPARTSUPP e
</HSIOIN>
</OPTGUIDELINES> (Q1.5_SUPPKEY = Q2.PS_SUPPKEY)

) AS Q3
LEFT OUTER JOIN TPCD.PART AS Q4
ON (Q4.P_PARTKEY =Q3.PS_PARTKEY)

‘ Tip: Get the optimized SQL from the explain facility

15

The preferred option for referencing derived tables is to use the TABID attribute to
specify the optimized SQL correlation name.

15



Tridex

Referencing derived tables A D82 USER GROUP
* Option 2: Rewrite the SQL to use an inline view and reference the view in the
guideline:
WITH VX AS

(SELECT S.S NAME, PS.PS_AVAILQTY, PS.PS PARTKEY
FROM TPCD.SUPPLIER S INNER JOIN TPCD.PARTSUPP PS ON S.S_SUPPKEY = PS.PS_SUPPKEY)
SELECT VX.S_NAME, VX.PS_AVAILQTY, P.P_NAME
FROM VX LEFT OUTER JOIN TPCD.PART P ON P.P_PARTKEY = VX.PS_PARTKEY
/* <OPTGUIDELINES>
<HSJOIN>
<IXSCAN TABLE="P"/>
<ACCESS TABLE="VX" />
</HSJOIN>
<HSJOIN>
<IXSCAN TABLE="S" />
<IXSCAN TABLE="PS"/>
</HSJOIN>
</OPTGUIDELINES> */

Must also unnest the join guidelines

Caveat — works for this example, but it
might not in more complex scenarios

16

An alternative to using TABID is to rewrite the SQL statement so that the derived
table is an inline view. Use the TABLE attribute to reference the inline view. This
only works for simple inline views that have not been changed by automatic query
transformations.

16



Tridex

Table references in views A 052 UER GROUP
* Example DB2USER.V2
CREATE VIEW “DBGuy" V1 as - A
(SELECT * FROM EMPLOYEE A WHERE SALARY > 50000) ; “DBGuy".V1 DEPT A
4
CREATE VIEW DB2USER V2 AS (SELECT * FROM “DBGuy".V1, DEPT A | EMPLOYEE A

WHERE A.MGR_ID IN ('52’,’53’/54’) AND “DBGuy”V1.DEPTNO = A.DEPTNO );

SELECT * FROM DB2USER.V2 A WHERE A.HIRE_DATE >'01/01/2004’
/* <OPTGUIDELINES><IXSCAN TABLE='A/“DBGuy" V1/A’/></OPTGUIDELINES> */

Extended syntax allows unambiguous table references in views
TABLE="A"is ambiguous and would return an error
Extended name consists of exposed names in the path, from the statement reference
to the nested reference, separated by slashes
Same rules for exposed names apply to extended syntax

17

Optimization guidelines can use extended syntax to identify table references that
are embedded in views. The extended syntax for identifying table references in
views is a series of exposed names separated by a slash character. The value of
the TABLE attribute A/“DBGuy".V1/Aillustrates the extended syntax. The last
exposed name in the sequence (A) identifies the table reference that is a target of
the optimization guideline. The first exposed name in the sequence (A) identifies the
view that is directly referenced in the original statement. The exposed name or
names in the middle (“DBGuy".V1) pertain to the view references along the path
from the direct view reference to the target table reference. The rules for referring to
exposed names from optimization guidelines, described in the previous section,
apply to each step of the extended syntax.

Had the exposed name of the EMPLOYEE table reference in the view been unique
with respect to all tables that are referenced either directly or indirectly by the
statement, the extended name syntax would not be necessary.

Extended syntax can be used to target any table reference in the original statement,
SQL function, or trigger.

17



Table references in views Tridex

* Extended syntax is not necessary if all exposed names for table
references are unique

= Example

CREATE VIEW “DBGuy".V1 as (SELECT * FROM EMPLOYEE E WHERE
SALARY > 50,000) ;

CREATE VIEW DB2USER.V2 AS (SELECT * FROM “DBGuy".V1 WHERE
DEPTNO IN ('52', '63','54’) ;

SELECT * FROM DB2USER.V2 A WHERE V2.HIRE_DATE > '01/01/2004’
I* <OPTGUIDELINES><IXSCAN TABLE=‘E’/></OPTGUIDELINES> */;

18

Extended syntax is not necessary if all exposed names for table references are
unique.

18



Ambiguous table references Tridex
* Example

CREATE VIEW V1 AS
(SELECT * FROM EMPLOYEE WHERE SALARY >
(SELECT AVG(SALARY) FROM EMPLOYEE);

SELECT * FROM V1 WHERE DEPTNO IN ("M62’,’M63’)
/* <OPTGUIDELINES><IXSCAN TABLE="V1/EMPLOYEE’/></OPTGUIDELINES> */ ;

Which EMPLOYEE reference?
The IXSCAN request is ignored

* Uniquely identify EMPLOYEE by adding correlation names in the view
* Use TABID

“Correlation names in the optimized SQL are always unique

19

An optimization guideline is considered invalid and is not applied if it matches
multiple exposed or extended names.

The optimizer considers the IXSCAN access request ambiguous, because the
exposed name EMPLOYEE is not unique within the definition of view V1.

To eliminate the ambiguity, the view can be rewritten to use unique correlation
names, or the TABID attribute can be used. Table references that are identified by
the TABID attribute are never ambiguous, because all correlation names in the
optimized statement are unique.

19



Conflicting optimization guidelines Tridex,,

* Example

<OPTGUIDELINES>
<IXSCAN TABLE=""Tpcd".PARTS’ INDEX="I_PTYPE’/>

<IXSCAN TABLE=""Tpcd".PARTS’ INDEX="I_SIZE’/>
</OPTGUIDELINES>

Multiple optimization guidelines can’t reference the same table
The first reference is applied and the others are ignored
If|_PTYPE doesn’t exist but |_SIZE does, the guideline is still ignored !

20

Each of the IXSCAN elements references the “Tpcd".PARTS table in the main
subselect.

When two or more guidelines refer to the same table, only the first is applied; all
other guidelines are ignored, and an error is returned.

20



Query Rewrite Guidelines Tridex

* Example:
SELECT S.S_NAME ...

FROM
"Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS @ m
WHERE

P_PARTKEY = PS.PS_PARTKEY AND
S.5_SUPPKEY = PS.PS_SUPPKEY AND
P_SIZE IN (35, 36, 39, 40) AND VALUES PARTS
S.5_NATION IN ('INDIA', 'SPAIN') 35

ORDER BY 5.5 NAME

36
39
/* <OPTGUIDELINES><INLIST2JOIN TABLE="P’ /></OPTGUIDELINES> */ 40

* INLIST2JOIN specifies that list of constantsin IN list predicate should be transformed to an in-

memory table (similar to a VALUES clause)
* In-memory table can then be joined to “Tpcd”.PARTS using an indexed NLIN

* Or a HSIN too. The join method can also be specified!
* Target IN-list identified by specifying table to which predicate is applied

* [f there are multiple IN-lists for the same table, guideline can be further qualified with COLUMN
attribute

21

This particular query rewrite optimization guideline specifies that the list of constants
in the predicate P_SIZE IN (35, 36, 39, 40) should be transformed into a table
expression. This table expression would then be eligible to drive an indexed nested-
loop join access to the PARTS table in the main subselect. The TABLE attribute is
used to identify the target IN-LIST predicate by indicating the table reference to
which this predicate applies. If there are multiple IN-LIST predicates for the
identified table reference, the INLIST2JOIN rewrite request element is considered
ambiguous and is ignored.

In such cases, a COLUMN attribute can be added to further qualify the target IN-
LIST predicate.

21



General Optimization Guidelines Tridex

* Example

SELECT S.S_NAME, S.5_ADDRESS, S.S_PHONE

FROM "Tpcd".SUPPLIERS S

WHERE S.S_NATION IN (?, ?) AND 5.5_SUPPKEY = ?

ORDER BY S.5_NAME

/* <OPTGUIDELINES> <REOPT VALUE="ONCE’/> </OPTGUIDELINES> */

‘ONCE’ indicates that optimization should be deferred until the first set of
variable values is provided.

This allows the optimizer to compare the input values to the statistics to get a
better selectivity estimate and a better query execution plan

22

https:/imww.ibm.com/docs/en/db2/11.5?topic=wtqop-using-reopt-bind-option-input-
variables-in-complex-queries
REOPT

Specifies whether to have Db2 optimize an access path using values for host variables,
parameter markers, global variables, and special registers. Valid values are:

NONE

The access path for a given SQL statement containing host variables, parameter
markers, global variables, or special registers will not be optimized using real values for
these variables. The default estimates for the these variables will be used instead, and this
plan is cached and used subsequently. This is the default behavior.

ONCE

The access path for a given SQL statement will be optimized using the real values of
the host variables, parameter markers, global variables, or special registers when the query
is first executed. This plan is cached and used subsequently.

ALWAYS

The access path for a given SQL statement will always be compiled and reoptimized
using the values of the host variables, parameter markers, global variables, or special
registers known at each execution time.

22



Putting an optimization profile into effect Tridex,,

* Create the OPT_PROFILE table in the SYSTOOLS schema:

CALL SYSPROC.SYSINSTALLOBJECTS ( ‘OPT_PROFILES', 'C',
CAST (NULL AS VARCHAR(128)), CAST (NULL AS VARCHAR(128)))

= Alternatively, can issue this DDL directly:
CREATE TABLE SYSTOOLS.OPT_ PROFILE (
SCHEMA VARCHAR(128) NOT NULL,
NAME VARCHAR (128) NOT NULL,
PROFILE BLOB (2M) NOT NULL,
PRIMARY KEY ( SCHEMA, NAME ));

e Compose document, validate, insert into table with qualified name
Inserts inventory_db.xml from current directory into the SYSTOOLS.OPT_PROFILE table with qualified
name “DBA”. "PROFILEL"”

File profiledata:
“DBA”,"”PROFILE1l"”,"inventory_db.xml1”

IMPORT FROM profiledata OF DEL MODIFIED BY LOBSINFILE
INSERT INTO SYSTOOLS.OPT_ PROFILE;

https://www.ibm.com/docs/en/db2/11.5?topic=profiles-configuring-data-
server-use-optimization-profile

After an optimization profile is created and its contents are validated against
the current optimization profile schema (COPS), the contents must be
associated with a unigue schema-qualified name and stored in the
SYSTOOLS.OPT_PROFILE table.

23



Putting an optimization profile into effect

* Alternative way to insert optimization profile:

insert into systools.opt_profile wvalues('DBA’, ‘PROFILELl’,
blob('<?xml version="1.0" encoding="UTF-8"7?>
<OPTPROFILE>
<STMTPROFILE ID="Test 1">
<STMTKEY>
<! [CDATA[select * from ta where al > 10 and al < 20]]>
</STMTKEY>
<OPTGUIDELINES><IXSCAN TABLE="TA" INDEX="TA IX1"/></OPTGUIDELINES>
</STMTPROFILE>
</OPTPROFILE>")) ;

* Cast the input string to BLOB
* But must deal with embedded quotes!

Tridex

A DB2 USER GROUP

Another way to add an optimization profile is to just insert it in the

SYSTOOLS.OPT_PROFILE table using an INSERT statement. However,
embedded quotes need to be doubled and the length of the profile will be limited by

the maximum size of a string literal.

24



Tridex

Putting an optimization profile into effect Ao vserarov

= At the package level using the OPTPROFILE bind option
= For existing packages, use ALTER PACKAGE:

ALTER PACKAGE DB2USER.EMPADMIN OPTIMIZATION PROFILE DBA.PROFILE1
/* Bind optimization profile "DBA”."PROFILE] to the package ‘inventapp” */

DB2 PREP INVENTAPP.SQC BINDFILE OPTPROFILE DBA.PROFILEl
DB2 BIND INVENTAPP.BND

= At the dynamic statement level: using CURRENT OPTIMIZATION
PROFILE special register

/* Optimize statements using profile '‘DBA.PROFILET" */
SET CURRENT OPTIMIZATION PROFILE = ‘DBA.PROFILEL';

/* Optimize statements using profile JON.SALES' */
SET CURRENT SCHEMA = ‘JON';
SET CURRENT OPTIMIZATION PROFILE = 'SALES';

An optimization profile needs to be put into effect for the connection/session
or package.

An optimization profile can be specified for a new package using the
OPTPROFILE bind option. It can be specified for existing packages by using
the ALTER PACKAGE statement.

An optimization profile can be put into effect for dynamic SQL for the current
connection/session using the CURRENT OPTIMIZATION PROFILE special
register.

An optimization profile has a 2-part name. The name can be specified with a
literal, host variable, or special register. The name specified is the name
entered into the CURRENT OPTIMIZATION PROFILE special register. If the
specified optimization-profile-name is unqualified, the value of the
CURRENT DEFAULT SCHEMA register is used as the implicit qualifier. The
default value of the special register is null.

25



Putting an optimization profile into effect Tridex

/* Clear the special register and use the setting of the OPTPROFILE bind option */
SET CURRENT OPTIMIZATION PROFILE = NULL;

/* Don’t use optimization profile at all /
SET CURRENT OPTIMIZATION PROFILE = “”

= At the dynamic statement level: using db2_optprofile CLI option

—-— After each successful connect to the SANFRAN database, the CLI client
would issue the command:

SET CURRENT OPTIMIZATION PROFILE=JON.SALES.

[ SANFRAN]
DB2 OPTPROFILE JON.SALES

*If the value of the register specifies the name of an existing optimization profile, the
specified optimization profile is used when preparing subsequent dynamic DML
statements.

«If the value of the register is null, the optimization profile specified by the
OPTPROFILE bind option, if any, is used when preparing subsequent dynamic DML
statements.

«If the value of the register is null, and the OPTPROFILE bind option is not set, no
optimization profile is used when preparing subsequent dynamic DML statements.

*If the value of the register is the empty string, then no optimization profile is used
when preparing subsequent dynamic DML statements, regardless of whether the
OPTPROFILE bind option is set.

*Subsequent changes to CURRENT DEFAULT SCHEMA do not have any effect on
the optimization profile. The CURRENT OPTIMIZATION PROFILE register value is
set with the two part name that is in effect at the time SET CURRENT
OPTIMIZATION PROFILE statement is evaluated. Only another SET CURRENT
OPTIMIZATION PROFILE statement can change the optimization profile that is
used.

26



Putting an optimization profile into effect Tridex

A DB2 USER GROUP
* Use a connect procedure to put an optimization profile in effect
* Stored procedure that is executed when DB connection is established

* Avoids issuing an explicit SET CURRENT OPTIMIZATION PROFILE within each
connection

* Useful for setting general optimization guidelines
* Caninclude conditions to set different profiles based on user or client information

—-— Create the connection procedure
CREATE PROCEDURE DBA.CONNECTPROC ( )
READS SQL DATA
LANGUAGE SQL
if (session_user like ‘APPl%’ then
set current optimization profile 'OPTPROF APPl’
elseif
set current optimization profile 'OPTPROF APP2’'
end if @

-- Register the connection procedure in the DB config

db2 update db cfg for <dbname> using connect proc “DBA.CONNECTPROC"; 27

The connect procedure provides you a way to allow applications in your
environment to implicitly execute a specific procedure upon connection. This
procedure can allow you to customize an application environment to a database
from a central point of control. For example, in the connect procedure you can set
special registers such as CURRENT _PATH to non-default values by invoking the
SET CURRENT PATH statement. This new CURRENT_PATH value will now be the
effective default CURRENT_PATH for all applications.

Any procedure created in the database that conforms to the naming and parameter
restrictions can be used as the connect procedure for that database. The
customization logic is provided by you in the form of a procedure created in the
same database and is allowed to do any of the usual actions of a procedure such as
issue SQL statements.

https://www.ibm.com/docs/en/db2/11.5?topic=databases-customizing-application-
environment-using-connect-procedure

27



Updating an existing optimization profile Tridex,,

* Re-insert an updated XML document in SYSTOOLS.OPT_PROFILE

* Optimization profiles are parsed and cached to reduce overhead when
used for different statements

* Must flush the cache in order to pick up updated version:

* Flush the entire cache:
FLUSH OPTIMIZATION PROFILE CACHE
* Flush a cache entry for a specific optimization profile
FLUSH OPTIMIZATION PROFILE CACHE SALES

28

https://www.ibm.com/docs/en/db2/11.5?topic=profiles-modifying-optimization-profile

When you make a change to an optimization profile there are certain steps that
need to be taken in order for the changes in the optimization profiles to take effect.

When an optimization profile is referenced, it is compiled and cached in memory;
therefore, these references must also be removed. Use the FLUSH OPTIMIZATION
PROFILE CACHE statement to remove the old profile from the optimization profile
cache. The statement also invalidates any statement in the dynamic plan cache that
was prepared by using the old profile (logical invalidation).

28



Handling SQL in procedures Tridex,,

* Use SET_ROUTINE_OPTS to specify the optimization profile
CALL SET_ROUTINE_OPTS(‘OPTPROFILE DBA.INVENTDB ‘) %

CREATE PROCEDURE MY_PROC
BEGIN

DECLARE CURT CURSOR FOR SELECT ...
END %

* SQL might be modified during CREATE PROCEDURE processing

* Use explain facility or query system catalogs to get the modified SQL
statements to include in optimization profile STMTKEY element for
profile statement matching

* See speaker notes for an example

29

STMTNO should be the line number in the source code of the CREATE
PROCEDURE, relative to the beginning of the procedure statement (line number 1)

SELECT STMTNO, SEQNO, SECTNO, TEXT
FROM SYSCAT.STATEMENTSAS S,
SYSCAT.ROUTINEDEP AS D,
SYSCAT.ROUTINES ASR
WHERE PKGSCHEMA = BSCHEMA
AND PKGNAME = BNAME;
AND BTYPE =K'
AND R.SPECIFICNAME = D.SPECIFICNAME
AND R.ROUTINESCHAME = D.ROUTINESCHEMA
AND ROUTINENAME = ?
AND ROUTINESCHEMA = ?
AND PARM_COUNT =?
ORDER BY STMTNO

29



Embedded optimization guidelines — Tridex
precedence order (1]2) e

* Embedded overrides identical optimization guidelines specified in the
global section of an optimization profile e.g.
SELECT COUNT(*) FROM TAB1

/* <OPTGUIDELINES> <REOPT VALUE="ONCE’/> </OPTGUIDELINES> */;
Takes precedence over this active optimization profile:

<?xml version="1.0" encoding="UTF-8"?>

<OPTPROFILE VERSION="11.5.0">

<OPTGUIDELINES><REOPT VALUE="ALWAYS’/></OPTGUIDELINES>
</OPTPROFILE>

30

Embedded optimization guidelines override identical optimization guidelines
specified in the global section of an optimization profile.

30



Embedded optimization guidelines — Tridex
precedence order (2]2)

» Statement profiles override embedded guidelines e.g.
/* <OPTGUIDELINES> <REOPT VALUE="ONCE’/> </OPTGUIDELINES> */;

Is ignored with this active optimization profile:

<?xml version="1.0" encoding="UTF-8"?>

<OPTPROFILE VERSION="11.5.0">

<STMTPROFILE ID="STMTPROF1">
<STMTKEY> <![CDATA[ ]]> </STMTKEY>
<OPTGUIDELINES> <IXSCAN TABLE="TAB1"/> </OPTGUIDELINES>

</STMTPROFILE>

</OPTPROFILE>

31

Optimization guidelines provided by way of a statement profile section of an
optimization profile take precedence over embedded optimization guidelines. That
is, if the CURRENT OPTIMIZATION PROFILE register contains the name of an
optimization profile, and the specified optimization profile contains a matching
statement profile for a statement with embedded optimization guidelines, then the
embedded optimization guidelines are ignored by the optimizer.

31



Inexact SQL Statement Matching (1]4) 159X,

* Default: SQL statement text must be an exact match, other than white space

* |t is difficult to create optimization profiles for complex query workloads
* Queries might have same ‘shape’ but only differ by literals in predicates

* Match predicates on same columns with same relational operators, but
different literal values:
NAME = Joe’ €-> NAME = ‘Bob’
IN (1,2,3) €= IN (4,5,6)

* Match IN-list predicates with different numbers of items:
IN (1,2) €= IN (1,2,3)
IN (?2,?) €2 IN(?2,2,7)

* Match predicates with references to different host variables:
A=:hvl €2 A=:hv2

32

The statement key identifies the application statement to which statement-level
optimization guidelines apply. The matching method can be specified using the
STMTMATCH element in the optimization profile.

When the data server compiles an SQL statement and finds an active optimization
profile, it attempts to match each statement key in the optimization profile with the
current compilation key. The type of matching depends if exact or inexact matching
is specified in the optimization profile. You can specify which type of matching to
use by specifying the STMTMATCH element in the optimization profile. By setting
the EXACT attribute to TRUE or FALSE, you can enable either exact or inexact
matching. If you do not specify the STMTMATCH element, exact matching is
automatically enabled.

32



Inexact SQL Statement Matching (2|4) Tridex,,

* Inexact matching applies to all literals in the statement
* Different special registers will not match

* Statements that won’t match: A=5

C1 BETWEEN 5 AND :HV A=5+:HV
5 BETWEEN C1 AND C2

WITH RR
C1 IN (SELECT C1 FROM T1) WITH RS
C1IN(1,2,3)

C2 < CURRENT TIME
C1IN(C1,1,2) C2 <'11:12:40’
C1IN(C2,1,2)

C3 > CURRENT TIMESTAMP
C3 >'07/29/2010

With inexact matching, literals, host variables, and parameter markers are ignored
when the statement text from the statement key and compilation key is being
matched.

Exact and inexact matching operates as follows:

Matching is case insensitive for keywords. For example, select can match
SELECT.

Matching is case insensitive for nondelimited identifiers. For example, T1 can
match t1.

Delimited and nondelimited identifiers can match except for one case. For
example, T1 and "T1" will match, and so will t1 and "T1". However, t1 will not match
with "t1".

33



Inexact SQL Statement Matching (3|4) Tridex,,

* Applies to XQuery too

* Except for literals passed as function parameters representing SQL statement
text or column names

* XMLQUERY, XMLEXISTS and XMLTABLE are always exactly matched

* Inexact matching is specified using STMTMATCH attribute

* Can be specified at the global or statement level
* Global: applies to all statementsexecuted when profile is active

» Statement level specification takes precedence over global level

34

Inexact matching is applied to both SQL and XQuery statements. However, string
literals that are passed as function parameters representing SQL or XQuery
statements or statement fragments, including individual column names are not
inexactly matched. XML functions such as XMLQUERY, XMLTABLE, and
XMLEXISTS that are used in an SQL statement are exactly matched. String literals
could contain the following items:

« A whole statement with SQL embedded inside XQuery, or XQuery embedded
inside an SQL statement

* An identifier, such as a column name
* An XML expression that contains a search path

For XQuery, inexact matching ignores only the literals. The following literals are
ignored in inexact matching with some restrictions on the string literals:

» decimal literals
» double literals
* integer literals

* string literals that are not input parameters for functions: db2-fn:sqglquery, db2-
fn:xmlcolumn, db2-fn:xmlcolumn-contains

34



Inexact SQL Statement Matching (4|4) Tridex,,

<?xml version="1.0" encoding="UTF-8"7?>
<OPTPROFILE>
<!--Global section -->
<STMTMATCH EXACT='FALSE'/>
<!-- Statement level profile -->
<STMTPROFILE ID='Sl'>
<STMTMATCH EXACT='TRUE'/>
<STMTKEY>
<! [CDATA[select tl.cl, count(*) from tl,t2 where tl.cl =
t2.cl and tl.cl > 0]]>

</STMTKEY>
<OPTGUIDELINES>
<NLJOIN>
- v /s
z%giiﬁ gigig; ) ?é . ﬁ; *Statement S1 will use exact matching
</NLJOIN> *Statement S2 will use inexact matching
</OPTGUIDELINES>
</STMTPROFILE>
<STMTPROFILE ID='S2'>
<STMTKEY>
<! [CDATA[select * from tl where cl in (10,20,30)]]>
</STMTKEY>
(etc)
</OPTPROFILE>

This example shows how inexact matching can be specified globally for all
statements executed when the profile is in effect, or locally for a specific SQL
statement. The global setting is EXACT="FALSE’, so exact matching is not done for
statement S1. Statement S2 has its own STMTMATCH element with
EXACT="TRUE’ so its text will be matched exactly.

35



Optimization Profile SQL Statement MatchlAEIEX,,

* Other flexible matching done by default:
* Match any SQL keywords regardless of case e.g.
SELECT €-> SelecT
* Match delimited and undelimited identifiers e.g.
“T1” € T1

36

Matching is case insensitive for keywords. For example, select can match SELECT.
Matching is case insensitive for nondelimited identifiers. For example, T1 can match
t1.

Delimited and nondelimited identifiers can match except for one case. For example,
T1 and "T1" will match, and so will t1 and "T1". However, t1 will not match with "t1".

36



Specifying SQL Compiler Registry Variable Tridex

* SQL compiler registry variables only affect SQL compilation and are dynamic
* i.e. noinstance restart is necessary (db2set —im )
<OPTGUIDELINES>
<REGISTRY>
<OPTION NAME='DB2_ ANTIJOIN' VALUE='EXTEND'/>
<OPTION NAME='DB2_REDUCED OPTIMIZATION' VALUE='YES'/>
</REGISTRY>
</OPTGUIDELINES>

* Can be specified at the global or statement level
* Allows control at the package or statement level

* TIP: Use with a connect proc to limit SQL compiler registry variables based on query environment
* E.g. user, various client attributes, etc.

* Usage s identified in the explain output
* ENVVAR argument of the RETURN plan operator:

ENVVAR : (Environment Variable)
DB2_ANTIJOIN=NO [Global Optimization Guideline]

37

Optimization profiles can have different registry variable values applied to a specific
guery statement or to many query statements used in an application.

Setting registry variables in an optimization profile can increase the flexibility you
have in using different query statements for different applications. When you use the
db2set command to set registry variables, the registry variable values are applied to
the entire instance. In optimization profiles, the registry variable values apply only to
the statements specified in the optimization profile. By setting registry variables in
an optimization profile, you can tailor specific statements for applications without
worrying about the registry variable settings of other query statements.

Only a subset of registry variables can be set in an optimization profile.
See here for the full list:

https://www.ibm.com/docs/en/db2/11.5?topic=profiles-sqgl-compiler-registry-
variables-in-optimization-profile

37



Optimization guideline construction — accasSdex
A DB2 USER GROUP
requests

* Access requests — specify desired method for satisfying table reference

* Correspond to Db2 data access methods
* ANY (let the optimizer choose the base access)
TBSCAN (table scan)
IXSCAN (index scan)
LPREFETCH (list prefetch)
IXAND (index ANDing)
IXOR (index Oring)
XISCAN (XML index scan)
XANDOR (XML index ANDing and ORing)
ACCESS (any access type)

38

*TBSCAN, IXSCAN, LPREFETCH, IXAND, IXOR, XISCAN, and XANDOR

These elements correspond to Db2® data access methods, and can only be applied
to local tables that are referenced in a statement. They cannot refer to nicknames
(remote tables) or derived tables (the result of a subselect).

*ACCESS

This element, which causes the optimizer to choose the access method, can be
used when the join order (not the access method) is of primary concern. The
ACCESS element must be used when the target table reference is a derived table.
For XML queries, this element can also be used with attribute TYPE = XMLINDEX
to specify that the optimizer is to choose XML index access plans.

38



Optimization profile construction —join  Tridex
A DB2 USER GROUP
requests

* Join requests — specify desired method and order for joining tables
* Contain access or other join requests

* Correspond to Db2 join methods
* NUOIN
* HSJOIN
* MSJOIN
* JOIN (any join type)

39

*NLJOIN, MSJOIN, and HSJOIN

These elements correspond to the nested-loop, merge, and hash join methods,
respectively.
*JOIN

This element, which causes the optimizer to choose the join method, can be used
when the join order is not of primary concern.

All join request elements contain two sub-elements that represent the input tables of
the join operation. Join requests can also specify an optional FIRST attribute.

39



Optimization profile construction — rewriterridex
A DB2 USER GROUP
requests

* Specify query rewrite transformations

* Correspond to Db2 query rewrite transformation rules
* INLIST2JOIN (IN-list predicate to join)
* NOTEX2AJ (NOT EXISTS subquery to anti-join)
* NOTIN2AJ (NOT IN subquery to anti-join)
* SUBQ2JOIN (Subquery to join)

40

*IN-LIST-to-join _query rewrite requests

A INLIST2JOIN query rewrite request element can be used to enable or disable the
IN-LIST predicate-to-join rewrite transformation. It can be specified as a statement-
level optimization guideline or a predicate-level optimization guideline. In the latter
case, only one guideline per query can be enabled. The INLIST2JOIN request
element is defined by the complex type inListToJoinType.

*NOT-EXISTS-to-anti-join guery rewrite requests

The NOTEX2AJ query rewrite request element can be used to enable or disable the
NOT-EXISTS predicate-to-anti-join rewrite transformation. It can be specified as a
statement-level optimization guideline only. The NOTEX2AJ request element is
defined by the complex type notExistsToAntiJoinType.

*NOT-IN-to-anti-join_guery rewrite reqguests

The NOTIN2AJ query rewrite request element can be used to enable or disable the
NOT-IN predicate-to-anti-join rewrite transformation. It can be specified as a
statement-level optimization guideline only. The NOTIN2AJ request element is
defined by the complex type notinToAntiJoinType.

*Subqguery-to-join_query rewrite requests

The SUBQ2JOIN query rewrite request element can be used to enable or disable
the subquery-to-join rewrite transformation. It can be specified as a statement-level
optimization guideline only. The SUBQ2JOIN request element is defined by the
complex type subqueryToJoinType.



https://www.ibm.com/docs/en/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024582.html
https://www.ibm.com/docs/en/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024615.html
https://www.ibm.com/docs/en/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024616.html
https://www.ibm.com/docs/en/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024613.html

Problem determination Tridex

* |nvalid optimization guidelines are ignored

¢ SQL code +437 reason code 13 is returned

* Doesn’t prevent the SQL statement from running

* Use the explain facility to understand why guideline wasn’t applied

* 2 Explain tables for diagnostics
* EXPLAIN_DIAGNOSTICS
+ EXPLAIN_DIAGNOSTICS _DATA

* db2exfmt will provide the formatted messages
* Atable function is also available
* EXPLAIN_GET_MSGS

* Use explain facility to verify if optimization profiles have been applied:
Profile Information:
OPT PROF: (Optimization Profile Name)
- DBA. PROFILE1
STMTPROF: (Statement Profile Name)
SQL1

41

If OPT_PROF is missing, that means that an optimization profile wasn’t in effect
when the statement was explained. Check the CURRENT OPTIMIZATION
PROFILE special register or OPTPROFILE bind option.

If OPT_PROF appears but STMTPROF doesn’t, and you expected one to be in
effect, then the SQL statement text probably didn’t match.




Problem determination Tridex

* Example diagnostic messages:

EXPO004W The optimization profile or embedded optimization guideline is either not well-formed
or is invalid. Line number “554", character number “20".

EXPO012W Invalid access request. The index "index2" could not be found. Line number "573",
character number "20".

EXPOO09W Invalid access request. The table reference identified by the TABLE attribute could not
be found. Line number "573", character number "20"

* Line number
* Relative to position within the XML document

* Character number
* Relative to beginning of line specified by Line number

42

Some explain diagnostic messages for optimization profiles provide the line number
relative to the start of the XML document as well as a character number relative to
the beginning on the specified line.

42



Tridex

Summary A DB2 USER GROUP
* Help the optimizer do its job for all queries by providing it good
information:
* Statistics

» System configuration information
* Input variable values
* Schema information via DB constraints

* Tune specific queries, where the above approaches fail
* Use more direct approaches like optimization profiles as a last resort

* Optimization profiles provide a high degree of control over query
transformations and the access plan

43

43



Thank You

Speaker: John Hornibrook
Company: IBM Canada
Email Address: jhornibr@ca.ibm.com

John is a Senior Technical Staff Member responsible for
relational database query optimization on IBM's
distributed platforms. This technology is part of Db2 for
Linux, UNIX and Windows, Db2 Warehouse, Db2 on
Cloud, IBM Integrated Analytics System (lIAS), IBM
Db2 Analytics Accelerator (IDAA) and Db2 Big SQL.
John also works closely with customers to help them
fully realize the benefits of IBM's relational DB
technology products.

44



