
© 2017 IBM Corporation

Let Me Make This Clear (Things That Plenty of

DB2 for z/OS People Get Wrong)

TRIDEX – March 29. 2017

Robert Catterall

rfcatter@us.ibm.com

© 2017 IBM Corporation2

Introduction

▪ In the course of my work, I get a lot of questions from a lot of DB2 for z/OS people

▪Some of these questions suggest widespread

misunderstanding of certain DB2 features and functions

▪ In this presentation, I’ll highlight some of these

misunderstandings and provide (I hope) some clarity

 I’ll highlight misunderstandings in dark red italics

Robert,

Could you clear

something up for me?

© 2017 IBM Corporation3

Agenda

▪zIIP offload and native SQL procedures

▪zIIP offload and dynamic SQL

▪Selective query parallelism

▪Java stored procedures

▪High-performance DBATs

▪RELEASE(DEALLOCATE) “break-in”

▪Buffer pool monitoring

▪Group buffer pool monitoring

▪Page-fixed buffer pools and 1 MB page

frames

▪ Inactive DBATs versus inactive

connections

▪Partition-by-growth and smaller tables

▪Dynamic versus ad-hoc SQL

▪DB2 address space prioritization

▪DB2-managed archiving versus

system-time temporal

▪The IBM Data Server Driver versus

DB2 Connect

▪DB2 Connect versus z/OS Connect

© 2017 IBM Corporation4

zIIP offload and native SQL procedures

▪A lot of people are under the impression that native SQL procedure execution is

always zIIP-eligible

▪ In fact, native SQL procedure execution is only zIIP-eligible when the caller is a

DRDA requester – in other words, when the CALL comes through DDF

 Why? Because zIIP eligibility depends on a process running under a preemptible SRB versus a

TCB or a non-preemptible SRB

 A native SQL procedure runs under the task of the process that called it, and when the caller is

a DRDA requester, that task is a preemptible SRB in the DB2 DDF address space – that makes

the native SQL procedure zIIP-eligible

?

© 2017 IBM Corporation5

More on native SQL procedure zIIP eligibility

▪When a native SQL procedure is called by a process that runs under a TCB (e.g.,

a CICS transaction or a batch job), it will run under that TCB and so will not be

zIIP-eligible

▪Question: if a DRDA requester calls an external DB2 stored procedure, and that

stored procedure calls a native SQL procedure, will the native SQL procedure’s

execution be zIIP-eligible?

 Answer: NO, because an external stored procedure always runs under its own TCB in a stored

procedure address space, and the nested native SQL procedure will run under that TCB and so

will not be zIIP-eligible

5

TCB Preemptible SRB

Note: when an external stored procedure is called by a DRDA requester, you will see a little zIIP

offload, because associated send/receive processing is done under preemptible SRB in DDF

© 2017 IBM Corporation6

Still on the topic of native SQL procedures and zIIPs

▪Some people think that native SQL procedures, when they are zIIP-eligible, are

100% zIIP-offload-able

▪Nope – when a native SQL procedure is zIIP-eligible (i.e., when it is called by a

DRDA requester), it will be up to 60% zIIP-offload-able

 Why? Because SQL statements that execute under preemptible SRBs in the DB2 DDF address

space are up to 60% zIIP-offload-able, and a native SQL procedure is just SQL

 An implication: going from SQL DML statements issued directly from DRDA clients to packaging

SQL DML in native SQL procedures is not a way to boost zIIP offload, since the SQL is up to

60% zIIP-offload-able either way

• You can boost zIIP offload when you change external stored procedures called by DRDA requesters to

native SQL procedures

6

zIIP offload-o-meter

© 2017 IBM Corporation7

zIIP offload and dynamic SQL

▪Some people have this idea that there’s something about dynamic SQL that affects

zIIP offload-ability

▪The zIIP eligibility of a SQL statement – whether dynamic or static, depends on the

type of task under which the statement executes

 Preemptible SRB: zIIP-eligible

 TCB: not zIIP-eligible

▪Note: SQL statements issued by DRDA requesters (or by native SQL procedures

called by DRDA requesters) aren’t the only ones that run under preemptible SRBs

 When a query – static or dynamic – is parallelized by DB2, the “pieces” of the spilt query run under

preemptible SRBs and are up to 80% zIIP-offload-able (100% in a DB2 12 system)

7

zIIP

“Look the same to me”

© 2017 IBM Corporation8

Selective query parallelism

▪Some people are interested in DB2 query parallelism as a means of getting zIIP

offload for processes, such as batch jobs, that have “local” (i.e., not through DDF)

connections to DB2, but…

 …they think that there is no good option for granular control of query parallelism

• Think that, for dynamic SQL, either ALL queries are made candidates for parallelization via specification

of CDSSRDEF=ANY in ZPARM, or queries are selectively made candidates for parallelism via SET

CURRENT DEGREE = ‘ANY’

• Think that, for static SQL, only option is bind of package with DEGREE(ANY)

• Think that, for all queries, maximum degree of parallelization is whatever is specified for PARAMDEG in

ZPARM

▪What these people don’t know about is the SYSQUERYOPTS table in the DB2

catalog

8

“What’s that?”

© 2017 IBM Corporation9

More on SYSIBM.SYSQUERYOPTS

▪ Introduced with DB2 10 for z/OS in new-function mode

▪Used in conjunction with BIND QUERY command and SYSIBM.SYSQUERY table

▪Lets you specify that a specific query (static or dynamic) is to be a candidate for

parallelization, along with a maximum degree of parallelization for that specific

query – with NO code changes needed

▪Here’s a blog entry with more details:

http://robertsdb2blog.blogspot.com/2017/02/statement-level-control-of-db2-for-zos.html

9

“OK, static query ABC can be parallelized,
with a maximum degree of 4.

Dynamic query XYZ can be parallelized,
with a maximum degree of 8.”

© 2017 IBM Corporation10

Java stored procedures

▪ I’ve seen 2 misunderstandings pertaining to Java stored procedures:

 They’re a bad idea: they perform poorly and are CPU and memory hogs

 They are 100% zIIP-offload-able

▪ “Poor-performing, resource hog” view has roots in the situation of not-too-many

years ago, which has changed

 z/OS is a great Java environment: 1200% performance improvement from Java 5 on a z9

mainframe to Java 7 on an EC12

• Even better performance with Java 8 on a z13, thanks to features such as SIMD (Single Instruction

Multiple Data) and SMT (Simultaneous Multi-Threading)

 And, Java doesn’t “hog” memory – it exploits large memory resources (as does DB2 for z/OS),

and z Systems memory gets cheaper all the time

 And, DB2 11 delivered important enhancements for Java stored procedures

• One 64-bit multi-threaded JVM per Java stored procedure address space, versus a single-threaded 31-

bit JVM per Java stored procedure in an address space

10

© 2017 IBM Corporation11

Java stored procedures and zIIP eligibility

▪No, they are not 100% zIIP-eligible

 Yes, Java code execution in a z/OS system is zIIP-eligible, but SQL is not Java, so SQL

statements issued by a Java stored procedure are not zIIP-eligible

• Recall that SQL statements are zIIP-eligible when they execute under a preemptible SRB – SQL

statements issued by a Java stored procedure execute under the TCB of the Java stored procedure

• In truth, you would likely get a small amount of zIIP offload for SQL statements issued by a Java stored

procedure, because the zIIP engine used to execute the procedure’s Java code is “held on to” for a little

while when SQL starts executing

zIIP offload-o-meter

© 2017 IBM Corporation12

High-performance DBATs

▪Some people think, “We can’t use high-performance DBATs, because we wouldn’t

be able to get ALTERs and BIND/REBIND stuff done”

▪ It is true that any combination of persistent threads (i.e., threads that persist

through COMMITs) and RELEASE(DEALLOCATE) packages can interfere with

ALTER, BIND/REBIND, and more, but…

 …you have to keep in mind that these operations might be specifically blocked by high-

performance DBATs, as opposed to being generally blocked

• If package PKG1 is bound with RELEASE(DEALLOCATE) and is allocated to a high-performance DBAT,

and PKG1 is not dependent on table T1, an ALTER of T1 will not be blocked because of package PKG1

 If you determine that an ALTER (or BIND/REBIND, or online REORG that would materialize a

pending DDL change) would be blocked by a high-performance DBAT, use command to

temporarily “turn off” high-performance DBATs:

•-MODIFY DDF PKGREL(COMMIT)

12

Hi-Perf

© 2017 IBM Corporation13

More on RELEASE(DEALLOCATE) and concurrency

▪Some think they can’t use RELEASE(DEALLOCATE) packages at all – not with

high-performance DBATs, not with anything – because they will cause

concurrency problems

▪First, get the concurrency facts straight

 Does RELEASE(DEALLOCATE) cause page or row locks to be retained until thread

deallocation?

• NO – X locks on pages and rows are always released at COMMIT; S locks are typically released when

DB2 moves to the next page or row

 Table space locks are held longer with RELEASE(DEALLOCATE) – is that a problem?

• Generally speaking, NO, because table space locks are almost always of the intent variety (e.g., IX, IS),

and intent locks do not interfere with each other

• DB2 utilities have long been able to “break in” on RELEASE(DEALLOCATE) packages, by way of drain

locking (claims are always released at COMMIT)

13

© 2017 IBM Corporation14

DB2 11 and RELEASE(DEALLOCATE) “break in”

▪The real concurrency concern has been related to packages

 A package cannot be replaced or invalidated when it is in use

 A RELEASE(DEALLOCATE) package is considered to be continuously in-use as long as the

thread to which it is allocated exists

 Because of that, it used to be that an operation that would replace or invalidate package XYZ would

fail if package XYZ were bound with RELEASE(DEALLOCATE) and allocated to a persistent thread

• Failing operation could be a BIND/REBIND, an ALTER, or an online REORG that would materialize a

pending DDL change

▪This changed with DB2 11 (in new-function mode)

 If a BIND/REBIND, ALTER or pending DDL-materializing online REORG would be blocked by a

RELEASE(DEALLOCATE) package allocated to a persistent thread, DB2 can “break in” to let

blocked operation proceed

• Package’s behavior will be temporarily changed to RELEASE(COMMIT)

14

© 2017 IBM Corporation15

A little more on RELEASE(DEALLOCATE) “break-in”

▪Some folks think that this only applies to RELEASE(DEALLOCATE) packages

 Not so – in addition to switching package behavior to RELEASE(COMMIT), the new DB2 11

functionality will “drain” package to get its use count to 0

 That provides relief from blockages caused by RELEASE(COMMIT) packages that would

otherwise be “always in use” due to frequency of execution

▪Some people think that this applies to all kinds of persistent threads

 They’re actually half right

• RELEASE(DEALLOCATE) “break-in,” as it pertains to “in-DB2” threads, does apply to all types of

persistent threads, high-performance DBATs included – the package’s behavior will be changed to

RELEASE(COMMIT) at next commit

• “Break-in” does not apply to high-performance DBATs that are not processing in DB2 and have

RELEASE(DEALLOCATE) packages allocated to them

• So, even with DB2 11, it’s best to issue -MODIFY DDF PKGREL(COMMIT) to clear out high-

performance DBATs as needed for DBA tasks

15

© 2017 IBM Corporation16

Buffer pool monitoring

▪Lots of people think that the “hit ratio” is the key metric when it comes to buffer

pool monitoring and tuning

▪As far as I’m concerned, a buffer pool’s hit ratio is of very little value

▪ I’d much rather focus on a buffer pool’s total read I/O rate

 That’s total synchronous reads plus total prefetch reads (sequential, list, dynamic) for a buffer

pool, per second

• Can get these numbers from DB2 monitor statistics long report or online display of buffer pool activity,

or from DB2 command -DISPLAY BUFFERPOOL DETAIL

 What’s your objective for a buffer pool?

• Total read I/O rate < 1000 per second is good, < 100 per second is great

• Of course, for a buffer pool used to “pin” one or more objects (i.e., cache them in memory in their

entirety), your objective is a total read I/O rate of zero

16

© 2017 IBM Corporation17

Group buffer pool monitoring

▪Some think that the only metrics that matter are the “double zeroes” (0 directory

entry reclaims, 0 write failures due to lack of storage)

▪Another key metric is often overlooked: the “XI read hit ratio”

 That’s the percentage of the time that synchronous read requests directed to a GBP because of

local buffer cross invalidation (XI) resulted in “page found”

• (sync reads due to XI, data returned) / (total sync reads due to XI)

• Numbers can be found in DB2 monitor statistics long report or online display of GBP activity, or via DB2

command -DISPLAY GROUPBUFFERPOOL MDETAIL

 Buffer invalidations happen when directory entry reclaims occur, and when a page cached

locally by DB2 member X is changed on member Y

• If there are no directory entry reclaims, buffer invalidations must be due to pages being changed on

other members of the data sharing group

• If a page was changed on another DB2 member, it had to have been written to the GBP – when you go

to the GBP looking for that page, you’re hoping it’s still there

17

A hit ratio that does matter to me

© 2017 IBM Corporation18

More on the GBP XI read hit ratio

▪The more data entries there are in a GBP, the longer pages written to the GBP will

stay there, and the higher the XI read hit ratio will go

 I’ve often seen XI read hit ratios above 80%, even above 90%

 GBP XI read hits are good – generally two orders of magnitude faster than a disk read

▪ If ALLOWAUTOALT(YES) is specified for a GBP in the CFRM policy, check the

GBP’s ratio of directory entries to data entries

 Default ratio is 5:1

 I’ve seen ratios in excess of 250:1 with ALLOWAUTOALT(YES) in effect

 If you see a super-high ratio of directory entries to data entries for a GBP, one effect may be a

low XI read hit ratio

 If that’s the case, consider enlarging the GBP (given sufficient CF memory) and changing the

ratio of directory to data entries to something closer to 5:1

 Low XI read hit ratio no big deal if few GBP reads due to XI (e.g., < 1000/hour)

18

© 2017 IBM Corporation19

Page-fixed buffer pools and 1 MB page frames

▪Some people think that page-fixing buffers is only good for buffer pools that have

a high read I/O rate

▪ It is good for such pools (because they make I/Os cheaper), but it is also good for

high-activity pools, IF the buffers can reside in 1 MB real storage page frames

(true even if pool has low read I/O rate)

 I’d say that a pool with more than 1000 GETPAGEs/second is “high activity”

 Availability of 1 MB page frames depends on the value of the LFAREA parameter in the

IEASYSxx member of SYS1.PARMLIB

 When a buffer pool is defined with PGFIX(YES), DB2 will automatically seek to have the pool

backed by 1 MB page frames

 Why 1 MB page frames are good for high-activity pools: they make translation of virtual storage

to real storage addresses more CPU-efficient

19

1 MB

© 2017 IBM Corporation20

Inactive DBATs versus inactive connections

▪LOTS of people think that DBATs go “inactive” when they are not being used – the

DB2 documentation even refers to inactive DBATs

▪ In fact, DBATs do not go inactive

 It’s connections that go inactive when they are not in use

 When a transaction using a “regular” DBAT (as opposed to a high-performance DBAT)

completes, the DBAT goes into a disconnected – not an inactive – state

 What’s important: a disconnected DBAT (a DBAT in the DBAT pool) takes up a thread “slot” – it

counts towards the MAXDBAT limit

20

D
B

A
T

“I’m not inactive –
I’m disconnected”

© 2017 IBM Corporation21

Partition-by-growth and smaller tables

▪Some people think that partition-by-growth table spaces are only appropriate for

large tables

▪Not so

 People under this impression may be influenced by the word “partition,” which traditionally

(before universal table spaces) was associated with large tables

 A PBG table space’s DSSIZE (smallest value is 1 GB) is the space-used value that triggers

allocation of an additional partition for the table space

 A small table won’t grow to the DSSIZE value, so the PBG will be a one-partition table space

 The DSSIZE value doesn’t determine disk space utilization – that’s determined by amount of

data in table, PRIQTY, and SECQTY

21

OK Also OK

© 2017 IBM Corporation22

Dynamic versus ad-hoc SQL

▪Some DB2 people use the terms interchangeably, and end up opposing

applications that will issue dynamic SQL because that’s equated with ad-hoc SQL

 Result: developers can get the impression that their applications are not wanted on the z

Systems platform (not good)

▪Yes, ad-hoc SQL is dynamic, but the reverse is not necessarily true

 Consider a Java application that would access DB2 data via JDBC calls

• That’ll be dynamic SQL on the DB2 side, but more than likely the queries are hard-coded in the Java

programs – not ad-hoc

 Keep in mind that “static” SQL is a DB2 concept – many current developers who don’t have a

mainframe heritage are not familiar with this concept

 Bottom line: don’t paint all dynamic SQL with the same brush

• Important: developers should know that their applications are welcome on the DB2 for z/OS platform

22

© 2017 IBM Corporation23

DB2 address space prioritization

▪At plenty of sites, one or more DB2 address spaces are given a too-low priority in

the z/OS system’s WLM policy

 Result is degraded throughput for DB2-accessing applications

▪First, IRLM should be assigned to the super-high-priority SYSSTC service class

 When IRLM has work to do, it needs a processor right away; otherwise, lock acquisition and

release is delayed

 IRLM uses very little CPU, so no worries about it getting in the way of other address spaces if it

has a higher priority than those other address spaces

▪Should any other DB2 address spaces be assigned to SYSSTC?

 I say, “No” – remember what “Syndrome” said in “The Incredibles?”

23

“When everyone is
super, no one will be”

© 2017 IBM Corporation24

Prioritizing DB2 address spaces other than IRLM

▪DIST and any stored procedure address spaces should have the same priority as

MSTR and DBM1, and that should be below SYSSTC but a little higher than CICS

AORs (or IMS message regions)

 Some people give these DB2 address spaces a priority below CICS AORs, fearing that the DB2

address spaces will block CICS access to processors

• In fact, if DB2 tasks wait behind CICS tasks for processor time, CICS-DB2 transaction performance will

suffer (CICS monitor will show higher “wait for DB2” times)

 Some people give the DIST address space (DDF) a lower priority than other DB2 address

spaces, fearing that a higher priority will be too high for SQL coming through DDF

• In fact, the priority of the DIST address space applies only to the DDF system tasks, and these use very

little CPU

• The priority of SQL statements coming through DDF depends on the service class (or classes) to which

DDF-using applications are mapped in the WLM policy – if they are not mapped to a service class, they

get discretionary priority by default

24

Very low

© 2017 IBM Corporation25

Prioritizing DB2 address spaces other than IRLM (cont’d)

▪At some sites, DB2 stored procedure address spaces are given a lower priority

than other DB2 address spaces, because people don’t want DB2 stored

procedures executing at a too-high priority

 In fact, the priority at which a DB2 stored procedure executes is inherited from the process that

calls the stored procedure

 If a stored procedure address space has a too-low priority, that can result in delays in

scheduling called stored procedure for execution (that, in turn, negatively impacts the

performance of the callers of stored procedures)

 Note: native SQL procedures, like external stored procedures, run at the priority of the calling

process, but they execute in DBM1 under the caller’s task

25

© 2017 IBM Corporation26

DB2-managed archiving vs. system-time temporal

▪Some people get DB2-managed archiving (introduced with DB2 11) and system-

time temporal support (DB2 10) mixed up

▪That’s understandable – both are forms of archiving, if what you mean by

“archiving” is long-term retention of historical data

 With system-time temporal, base table has an associated history table, and history table holds

“before” image of rows that were made non-current via UPDATE and DELETE operations

• Implemented to enable viewing of data in a “current as of (some date)” fashion

 With DB2-managed archiving, base table has an associated archive table, and archive table holds

rows that are current (i.e., still in effect) but relatively old and relatively infrequently accessed

• Implemented to improve performance of retrieval of “newer” rows

 For both features, DB2 can make the base and “adjunct” tables appear to programs to be one

logical table

26

© 2017 IBM Corporation27

The IBM Data Server Driver vs. DB2 Connect

▪Some people think that DB2 Connect gateway servers are the way to go

▪Those people may think that way because they don’t know about a better

alternative: the IBM Data Server Driver

 Simplified IT infrastructure, better performance

• Eliminates a “hop” between application server and DB2 for z/OS, as IBM Data Server Driver is of the

“type 4” variety – straight to DB2 from the app server

 Lighter weight client, easier to configure and upgrade versus DB2 Connect

▪How can you get the IBM Data Server Driver?

 Easy: if you’re licensed for DB2 Connect, you are entitled to use the Data Server Driver

• Exception: DB2 Connect concurrent user license requires use of DB2 Connect gateway server

27

IBM Data
Server Driver

© 2017 IBM Corporation28

A little more on the IBM Data Server Driver

▪Functionality-wise, just about everything in DB2 Connect is also provided by the

IBM Data Server Driver – for example:

 Connection pooling

 Transaction pooling

 Sysplex workload balancing

 Drivers for lots of languages (not just Java and C# .NET, but others, too, including Perl, Python,

PHP, Ruby…)

▪About the only exception of which I’m aware: if an application requires 2-phase

commit capability and the application server uses a dual-transport processing

model, DB2 Connect is needed (DB2 12 should eliminate that requirement)

 Note: WebSphere Application Server uses a single-transport processing model

28

© 2017 IBM Corporation29

DB2 Connect versus z/OS Connect

▪Some people are unclear as to the difference between DB2 Connect (and the IBM

Data Server Driver) and z/OS Connect

▪DB2 Connect (and the Data Server Driver) continue to do what they have long done:

 They enable applications to access DB2 for z/OS data over a network connection, using industry-

standard relational database interfaces such as JDBC and ODBC

• In other words, they enable these applications to be DRDA requesters

▪z/OS Connect, newer on the scene, allows client applications to invoke z/OS-based

services in the form of APIs

 The services could be DB2 SQL statements and stored procedures, CICS transactions, IMS

transactions, WebSphere Application Server for z/OS transactions, or batch jobs

 The z/OS-based services are invoked by clients using REST calls (i.e., they are RESTful

services), and data payloads are in JSON format

29

© 2017 IBM Corporation30

A little more on z/OS Connect and DB2 for z/OS

▪DB2 12 delivered a native REST interface, and that capability was retrofitted to

DB2 11 via the fix for APAR PI66828

▪A client program can interact directly with DB2’s REST interface, or requests for

DB2 data services can go through z/OS Connect

 Either way, DB2’s REST interface is used

30

CICS

IMS

WebSphere

DB2

z/OS Connect

API

APIAPI

© 2017 IBM Corporation31

Thanks for your time

Robert Catterall

rfcatter@us.ibm.com

