
© 2022 IBM Corporation

Modern Db2 for z/OS Physical
Database Design (2022 Edition)

TRIDEX

September 8, 2022

Robert Catterall, IBM
Principal Db2 for z/OS Technical Specialist

Agenda

• Universal table spaces
• Get your partitioning right
• When did you last review your index configuration?
• Thoughts on putting other newer Db2 physical database design-related

features to work

© 2022 IBM Corporation 2

Universal table spaces

3© 2022 IBM Corporation

Your table spaces should be of the universal type

4

• Why? Because more and more Db2 for z/OS features and functions require
the use of universal table spaces:
o Partition-by-growth
- Eliminates the 64 GB size limit for table spaces that are not range-partitioned

o “Currently committed” locking behavior
- Retrieval of committed data not blocked by inserting, deleting processes

o Pending DDL
- Change table, table space and index characteristics via ALTER + online REORG

o LOB in-lining
- Store part (or all) of LOB values physically in base table vs. in LOB table space

o And more (next slide)
© 2022 IBM Corporation

More universal-dependent Db2 features

5

• Continuing from the preceding slide:
o XML multi-versioning
- Better concurrency for XML data access, and supports XMLMODIFY function

o ALTER TABLE with DROP COLUMN
o Insert partition into middle of range-partitioned table space
o ALTER COLUMN as pending change versus immediate change
o Relative page numbering
- Up to 280 trillion rows, 4000 TB of data in one table

o And more…

• Absent universal table spaces, you can’t use any of these features
© 2022 IBM Corporation

Getting to universal table spaces is pretty easy

6

• How easy? ALTER + online REORG (pending DDL change)
• Because universal table space always holds a single table, getting to

universal from single-table non-universal table space is particularly easy:
o For segmented or simple table space: go to universal partition-by-growth (PBG)

with ALTER TABLESPACE with MAXPARTITIONS specification
- Small MAXPARTITIONS value (even 1) fine for most existing segmented and

simple table spaces – can make it larger later (note: default DSSIZE is 4 GB)
o For classic* partitioned table space: go to universal partition-by-range (PBR)

with ALTER TABLESPACE with SEGSIZE specification
- Go with SEGSIZE 64 (unless number of pages < 128, which is not likely)

* “Classic” = non-universal range-partitioned, using table-controlled vs. index-controlled partitioning

© 2022 IBM Corporation

What about multi-table non-universal table spaces?

7

• For years, getting from one multi-table table space to multiple single-table
universal table spaces was challenging:
o Unload data from table in multi-table table space
o Drop table
o Re-create table in universal table space
o Reload data into table

• Db2 12 function level 508 (available in October 2020 – APAR is PH29392)
provided an online way to get from multi-table table spaces to universal

Had to do this for every table
you wanted to move from a
multi-table table space to a
universal table space

See next slide

© 2022 IBM Corporation

Multi-table table space to UTS PBG – the online way

8© 2022 IBM Corporation

Multi-table TS

TAB2

TAB3

TAB4

TSNEW1

TSNEW2

TSNEW3

TSNEW4 - optional

CREATE TABLESPACE TSNEW1 ... MAXPARTITIONS 1
DEFINE NO DSSIZE appropriate value (e.g. 64G)

�

ALTER TABLESPACE source table space MOVE
TABLE TAB1 TO TABLESPACE dbname.TSNEW1
• Pending change for source table space
• Repeat this step for every table you want to move
• Requires APPLCOMPAT(V12R1M508) for ALTER

Repeat this step for every target table space

�

� Online REORG of source table space
• Materializes pending changes – affected tables moved

to target table spaces
• Target table spaces are now fully operational

� Either ALTER TABLESPACE source table space
MAXPARTITIONS n (i.e., leave last table in source TS and
ALTER/REORG that TS to UTS PBG)
or move table to new TS (as done for previous tables)

TAB1

TAB2

TAB3

☼

TAB1

More on migration of multi-table table space to UTS PBG

9

• Target TS must be in same database as source TS, so plan for increase in:
o OBIDs in database (limit is 32,767)
o DBD cache in EDM pool
o Open data sets – DSMAX limit (fix for APAR PH27493, delivered in October 2020,

can help here – reduces number of open data sets involved in utility execution)

• MOVE TABLE is a pending DDL change
o Until materialized, any immediate change and a subset of pending changes

prohibited for any table in source TS – even if table not affected by MOVE
o If necessary, you can DROP PENDING CHANGES

• No PIT recovery for source TS to time before materializing REORG
• Packages dependent on table invalidated when table moved to new TS
© 2022 IBM Corporation

Get your partitioning right

10© 2022 IBM Corporation

Partition-by-range vs. partition-by-growth

11

• Generally speaking, this debate is relevant for large tables
o I think of “large” as meaning, “at least 1 million rows” – it would be a little

unusual to range-partition a table smaller than that

• Partition-by-growth table spaces are attractive from a DBA labor-saving
perspective – they have a “set it and forget it” appeal
o No worries about identifying a partitioning key and establishing partition ranges,

no concern about one partition getting a lot larger than others
o Just choose reasonable DSSIZE and MAXPARTITIONS values, and you’re done

• That said, I would generally favor range-partitioning a large table
Here’s why (next slide)

© 2022 IBM Corporation

Advantages of partition-by-range for large tables

12

• Maximum partition independence from a utility perspective
o You can even run LOAD at the partition level for a PBR table space
o Data-partitioned secondary indexes really maximize partition independence (but

DPSIs not always good for query performance – do predicates reference
partitioning key?)

• Enables use of page-range screening by optimizer (limit partitions scanned
when predicates reference table’s partitioning key)
• Can be a great choice for data arranged by time (see slides 20, 21)
• Maximizes effectiveness of parallel processing (Db2- and user-driven)
• Can use relative page numbering (Db2 12 – more on this to come)

© 2022 IBM Corporation

PBR vs. PBG: many old PBR headaches have been addressed

13

• In making PBR vs. PBG decision, keep in mind that recent enhancements
have made management of PBR table spaces substantially easier than
before – for example:

- Online adjustment of partition limit key values – ALTER and online REORG
(Db2 11)

- Insert new partition into the middle of a PBR table space (Db2 12)
- Relative page numbering – multiple benefits (Db2 12)

© 2022 IBM Corporation

When you wish that a PBG table space had been PBR instead

14

• Sometimes, a decision to go with PBG for a table space looked good until
the table got really big – in such cases, some DBAs experience PBG
“buyer’s remorse”
• For a long time, only way to change a table space from PBG to PBR was

unload/drop/re-create/re-load
o And, larger a table is, the more advantageous it tends to be to use PBR vs. PBG
o But larger a table is, the more challenging it’s been to change from PBG to PBR

© 2022 IBM Corporation

This changed with Db2 13 for z/OS

Db2 13 (FL500): online conversion from PBG to PBR

15© 2022 IBM Corporation

– ALTER TABLE statement enhanced with new ALTER PARTITIONING clause

ALTER TABLE E8054.TB01
ALTER PARTITIONING TO PARTITION BY RANGE (COLINT, COLCHAR)
(PARTITION 1 ENDING AT (5, ‘CCC’),
PARTITION 2 ENDING AT (10, ‘MMM’),
PARTITION 3 ENDING AT (MAXVALUE, MAXVALUE))

– After execution of above statement, online REORG of table space changes physical
design from partition-by-growth to partition-by-range

– Note: resulting RBR table space will use relative page numbering, which is the
default for PBR table spaces in a Db2 13 environment

Relative page numbering – this is big

16

• PAGENUM RELATIVE option of ALTER and CREATE TABLESPACE available
with Db2 12 function level 500
o Db2 package through which ALTER or CREATE TABLESPACE with PAGENUM

RELATIVE is issued must have APPLCOMPAT value of V12R1M500 or higher
o What had been thought of as “regular” page numbering now called absolute

page numbering

• The difference: instead of every page in table space having a unique
number, with RPN page numbering starts over with each partition
o So, unique identifier of page in an RPN table space is combination of partition

number and page number
o RID length increases for RPN table space: 7 bytes versus 5

© 2022 IBM Corporation

What RPN does for you…

17

• DSSIZE (maximum partition size) can be different for different partitions
o Formerly, could only specify DSSIZE at table space level

• DSSIZE can be n GB, with n being any integer from 1 through 1024
o Number of GB formerly had to be a power of 2
o And, max partition size of 1024 GB – big increase versus former max of 256 GB

• Alter of DSSIZE for partition to a larger value is immediate change – no
need to REORG partition in question

© 2022 IBM Corporation

What RPN does for you (continued)

18

• Max number of partitions no longer affected by DSSIZE or page size
o Can have up to 4096 partitions, regardless of DSSIZE or page size
- Formerly (example): 256 GB DSSIZE and 4 KB page size = 64 partitions, max

o So, with RPN you can have:
- Up to 4096 TB of data in one table
- Up to 280 trillion rows in one table (if using 4 KB page size)

© 2022 IBM Corporation

A bit more on RPN table spaces

19

• Convert existing universal PBR table space to RPN via ALTER TABLESPACE
with PAGENUM RELATIVE, followed by online REORG of table space
o Existing classic partitioned table space: ALTER TABLESPACE with SEGSIZE

specification, ALTER again with PAGENUM RELATIVE, then REORG table space

• New Db2 12 ZPARM parameter, PAGESET_PAGENUM, specifies default
page numbering mechanism to be used for new PBR table spaces
o Valid values are ABSOLUTE (Db2 12 default) and RELATIVE (Db2 13 default)
o Can override value of ZPARM when issuing CREATE TABLESPACE

• Partitioned indexes on RPN table spaces get benefits, too, including ability
to specify different DSSIZE values for different index partitions

© 2022 IBM Corporation

What could 4096 partitions do for you?

20

• With ALTER TABLE ADD PARTITION, partitioning by time period can be an
attractive option
o With 1 week of data per partition, in 10 years you’d only be at 520 partitions

• Would you eventually hit limit on number of partitions for table space,
absent ALTER TABLE DROP PARTITION (which we don’t yet have)?
o Yes, but 4096 partitions provides a lot of runway while we wait for that

enhancement
o ALTER TABLE ROTATE PARTITION FIRST TO LAST is an option for keep “rolling”

number of time periods in a table
- Changes mapping of logical to physical partitions, but so does the “insert

partition” feature of Db2 12 (more on that to come)

© 2022 IBM Corporation

Performance advantages of date-based partitioning

21

• If more recently inserted rows are the more frequently accessed rows,
you’ve concentrated those in fewer partitions
• Very efficient data purge (and archive) if purge based on age of data – just

empty out a to-be-purged partition via LOAD REPLACE with a DD DUMMY
input data set (unload first, if archive desired)
• A second partition key column can give you two-dimensional partitioning –

optimizer can really zero in on target rows
o Example: table partitioned on ORDER_DATE, REGION

Part 1

Part 2

Part 3

Week 1

Region 1

Region 2

Region 3

Part 4

Part 5

Part 6

Week 2

Part 7

Part 8

Part 9

Week 3

Part 10

Part 11

Part 12

Week 4

Part 13

Part 14

Part 15

Week 5

Part 16

Part 17

Part 18

Week 6 …

…

…

…
© 2022 IBM Corporation

When did you last review
your index configuration?

22© 2022 IBM Corporation

Get rid of indexes that are not doing you any good

23

• Useless indexes increase the CPU cost of INSERTs, DELETEs, some
UPDATEs and many utilities, and waste disk space
• In catalog: use SYSPACKDEP table, and LASTUSED column of

SYSINDEXSPACESTATS table, to identify indexes that are not helping the
performance of static or dynamic SQL statements, respectively
o If you find such indexes, do some due diligence, and if they are not needed for

something like unique constraint enforcement, DROP THEM

• Also, see if some indexes can be made useless – then drop them
o Leverage index INCLUDE capability (delivered with Db2 10): if you have unique

index IX1 on (C1, C2), and index IX2 on (C1, C2, C3) for index-only access,
INCLUDE C3 in IX1 and drop IX2

© 2022 IBM Corporation

Index page size: should you go bigger than 4 KB?

24

• For a long time, 4 KB index pages were your only choice
• Db2 9 made larger index pages – 8 KB, 16 KB, 32 KB – an option
• Larger page sizes are a prerequisite for index compression
• Some people think large index page sizes are ONLY good for compression

enablement – NOT SO
o For index with key that is NOT continuously ascending, defined on table that

sees a lot of insert activity, larger index page size could lead to major reduction
in index page split activity

o Larger index page size could also reduce number of levels for an index –
something that could reduce GETPAGE activity

o Bigger index pages could also improve performance of index scans

© 2022 IBM Corporation

Consider newer index types that can speed queries

25

• For example, index-on-expression (introduced with Db2 9) could make
this predicate stage 1 and indexable:
o WHERE SUBSTR(C1,4,5) = ‘ABCDE’

o The CREATE INDEX statement could look like this:
o CREATE INDEX SUBSTRIX
o ON TABLE T1
o (SUBSTR(C1, 4, 5))
o USING STOGROUP…

• Another example: index on an XML column, to accelerate access to data in
XML documents

© 2022 IBM Corporation

Thoughts on putting other newer Db2 physical
database design-related features to work

26© 2022 IBM Corporation

Storing data as LOBs even when you don’t have to

27

• If length of some column values > 32,704 bytes, must use LOB data type
• You can use a LOB data type for a column whose values will never exceed

32,704 bytes in length – why would you?
o Suppose you have a situation in which values in column BIGCOL will average

20,000 bytes in length, and rest of the row will average 200 bytes in length
o Suppose further that values in the BIGCOL column will rarely be retrieved or

referenced in a query predicate
o If you make BIGCOL a LOB column, its values will be physically placed in an

auxiliary table in a LOB table space, and that LOB table space can have a buffer
pool that is different from the one to which base table’s table space is assigned

o Result: can get LOTS more of the table data that is frequently accessed in the
buffer pool, with CPU and elapsed time benefits

© 2022 IBM Corporation

LOB in-lining and LOB table space compression

28

• In-lining: Db2 can store up to first n bytes of LOB value physically in base
table – remainder of LOB value (if any) stored in auxiliary table in LOB TS
o Can significantly improve performance for processes that insert or retrieve LOB

values, IF majority of values in column can be completely in-lined in base table
o Note: even if most values in LOB column can be completely in-lined, in-lining

could be overall negative for performance if LOB values are rarely accessed
- Reason: LOB in-lining makes base table rows longer, so GETPAGEs go up and

buffer pool hits go down – little offsetting benefit if LOB values rarely accessed

• Compression: with Db2 12, can specify COMPRESS YES for LOB TS
o Disk and buffer pool space savings (LOB values in compressed form in memory)
o Uses IBM zEDC technology (z15 boosted performance with on-chip compression)

© 2022 IBM Corporation

Index compression

29

• Index compression reduces disk space consumption, period (index pages
are compressed on disk, not compressed in memory)
• If you want less disk space usage for indexes, consider index compression

o CPU overhead of index compression should be fairly low, and you can make it
lower by reducing index I/O activity (by assigning indexes to large buffer pools)
- This is so because much of the cost of index compression is incurred when an

index page is read from or written to the disk subsystem
- Additional cost of I/Os related to index compression is reflected in application

class 2 CPU time for synchronous read I/Os, and in CPU consumption of DBM1
address space for prefetch reads, database writes

- Best bang for your index compression buck may be realized when
compression is used for a relatively small number of your very largest indexes

100% zIIP-eligible since Db2 10

© 2022 IBM Corporation

Reserving space for length-changing UPDATEs

30

• If row in page X becomes longer because of an UPDATE, and no longer fits
in page X, it is moved to page Y and a pointer to page Y is placed in page X
o That’s called an indirect reference, and it’s not good for performance

• Db2 11 introduced feature that can reduce indirect references by letting
you reserve space in pages to accommodate length-increasing UPDATEs
• PCTFREE n FOR UPDATE m on ALTER/CREATE TABLESPACE, where n and

m are free space for inserts and updates, respectively
o PCTFREE_UPD in ZPARM provides default value (PCTFREE_UPD default is 0)
o PCTFREE_UPD = AUTO (or PCTFREE FOR UPDATE -1): 5% of space in pages will

initially be reserved for length-increasing UPDATEs, and that percentage will
subsequently be adjusted based on real-time stats

© 2022 IBM Corporation

More on PCTFREE FOR UPDATE

31

• When specified in ALTER TABLESPACE statement, change takes effect
next time table space (or partition) is loaded or reorganized
• Good idea to have PCTFREE FOR UPDATE > 0 when a table space gets a lot

of update activity and row lengths can change as a result
o Row-length variability tends to be greatest when nullable VARCHAR column

initially contains null value that is later updated to non-null value
o UPDATESIZE column of SYSTABLESPACESTATS in catalog shows table space

growth due to update activity – helps in identifying candidate table spaces

• Goal is fewer indirect references – check on that with these catalog tables:
o SYSTABLESPACESTATS: REORGNEARINDREF and REORGFARINDREF
o SYSTABLEPART: NEARINDREF and FARINDREF

© 2022 IBM Corporation

Db2 transparent archiving

32

• Suppose you have a table with 20 years of data, and 95% of requests are
for rows inserted within the past 3 months
• Especially if the table is NOT clustered on a continuously-ascending key,

over time the newer, “popular” rows will be separated from each other by
ever-growing numbers of “old and cold” rows
• With Db2 transparent archiving, ”popular” rows are concentrated in the

base table, and “older, colder” rows are stored in associated archive table
o Can provide significant performance boost for processes accessing “popular”

rows Before Db2 transparent
archiving

After Db2 transparent
archiving Newer, more

“popular” rows

Older rows, less
frequently retrieved

© 2022 IBM Corporation

More on Db2 transparent archiving

33

• Does not complicate query coding – Db2 can make physically separate
base and archive tables appear to be single logical table for SELECTs
o Involves binding program’s package with ARCHIVESENSITIVE(YES) and setting

built-in Db2 global variable SYSIBMADM.GET_ARCHIVE to ‘Y’
o In that case, for a query that references base table Db2 will execute same query

for archive table and will UNION the result sets

• Easy to move row from base table to archive table: just delete row from
base table – Db2 will move row to archive table if built-in global variable
SYSIBMADM.MOVE_TO_ARCHIVE is set to ‘Y’ for deleting program
o ‘Y’ can be made default value of global variable via a ZPARM, or through use of

Db2 profile tables

© 2022 IBM Corporation

Implementing Db2 transparent archiving

34

• Easily done: DBA creates table (e.g., T1_AR) to be used as archive for base
table T1, and enables archiving via ALTER:
o ALTER TABLE T1 ENABLE ARCHIVE USE T1_AR;

• Note: base table and archive table have to be logically equivalent (same
columns, with same names and data types, in same order) but can be
different in a physical design sense
o For example, if base table is in a PBG table space, associated archive table can

be range-partitioned
o Also: no requirement that base and archive have all the same indexes

© 2022 IBM Corporation

35© 2022 IBM Corporation

Robert Catterall
rfcatter@us.ibm.com

