Monitoring and Optimizing Db2
Prefetching and I/O

Christopher Drexelius
IBM

Session code: B6
Db2 LUW

1/0 is a fundamental characteristic of Db2 performance. It is not only important to understand I/O access patterns via monitoring, but also to

be able to tune Db2 prefetching and I/0. Optimizing Db2 1/0 is critical both for row- and column-organized table performance. Attend this
session to peek behind the curtain at Db2 prefetching and I/O both from a functional and monitoring perspective and learn tips and tricks for

tuning Db2 to maximize 1/0 throughput.

biouG | IDUG virTUAUS

~h Conference W #DUGDb2

Please note :

e |BM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice
and at IBM’s sole discretion.

¢ Information regarding potential future products is intended to outline our general product direction and it should
not be relied on in making a purchasing decision.

¢ The information mentioned regarding potential future products is not a commitment, promise, or legal obligation
to deliver any material, code or functionality. Information about potential future products may not be
incorporated into any contract.

¢ The development, release, and timing of any future features or functionality described for our products remains
at our sole discretion.

¢ Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending upon many
factors, including considerations such as the amount of multiprogramming in the user’s job stream, the /O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that
an individual user will achieve results similar to those stated here.

iteract with IBM, this serves as your authorization UG o its ve to pravide your cor nforr 0 IBM in order for IBM sllow up on your inte

IDUG | IDUG virTUAUS

>h Conference

W #DUGDb2

Notices and disclaimers

*©® 2020 International Business Machines Corporation. No part of this
document may be reproduced or transmitted in any form without
written permission from IBM.

*U.S. Government Users Restricted Rights — use, duplication or discdlosure
restricted by GSA ADP Schedule Contract with IBM.

sInformation in these presentations (including information relating to
products that have not yet been announced by IBM) has been reviewed for
accuracy as of the date of initial publication and could include unintentional
technical or typographical errors. IBM shall have no responsibility to update
this information. This document is distributed “as is” without any warranty,
either express or implied. In no event, shall IBM be liable for any damage
arising from the use of this information, including but not limited to, loss of
data, business interruption, loss of profit or loss of opportunity.

IBM products and services are warranted per the terms and conditions of the
agreements under which they are provided.

*IBM products are manufactured from new parts or new and used parts.
In some cases, a product may not be new and may have been previously
installed. Regardless, our warranty terms apply.”

*Any statements regarding IBM's future direction, intent or product plans
are subject to change or withdrawal without notice.

When you interact with IBM, this serves as your authorization to IDUG or its vendor to provide your ¢

IBM’s use of

*Performance data contained herein was generally obtained in a controlled,
isolated environments. Customer examples are presented as illustrations of
how those customers have used IBM products and the results they may have
achieved. Actual performance, cost, savings or other results in other
operating environments may vary.

*References in this document to IBM products, programs, or services does
not imply that IBM intends to make such products, programs or services
available in all countries in which IBM operates or does business.

*Workshops, sessions and associated materials may have been prepared by
independent session speakers, and do not necessarily reflect the views of
IBM. All materials and discussions are provided for informational purposes
only, and are neither intended to, nor shall constitute legal or other guidance
or advice to any individual participant or their spedific situation.

*|t is the customer’s responsibility to insure its own compliance with legal
requirements and to obtain advice of competent legal counsel as to

the identification and interpretation of any relevant laws and regulatory
requirements that may affect the customer’s business and any actions the
customer may need to take to comply with such laws. IBM does not provide
legal advice or represent or warrant that its services or products will ensure
that the customer follows any Iew

nformat 0 IBM ir YW UP 0N your interac

piDUG | IDUG virTUAUS

»ch Conferenc YW #IDUGDb2

Agenda

e |/O and Buffer Pools

e Prefetching

* Page Cleaning

* Some Key Tuning I/O Tips, Tricks, and Best Practices

’ “(i\\\\\\\

810UG | IDUG viIrTUAUS

¥ #DUGDb2

1/0 and Buffer Pools

—— OO

810UG | IDUG virTUAUS

ech Conference ¥ #IDUGDb2

1/0 — What's it All About?

* |/O (Input/Output) is a fundamental characteristic of reading/writing
data to and from disk

» Accessing data on disk (SSD, spinning disks, etc.) may vary in terms of
performance, but is not free

e Optimizing data access via buffer pools is a fundamental feature of
Db2

* Proper buffer pool and related I/O configuration is critical to optimize
workload performance

)iouG | IDUG

VIRTUALS

~h Conference

YW #IDUGDb2

Db2 Buffer Pools in Pictures

Db2

Application

Coord

Agent

Subagents)
b

Buffer pools

sAyd

o/I1

The application opens a connection to process a statement that is initially handled by the Coordinator Agent. This agent may subdivide the
task across multiple subagents. Depending on the application request, we may or may not execute logical 1/0 to check the buffer pools for

pages. If alogical I/O is executed, and the desired page does not already exist in the buffer pool, a physical I/O will take place to fetch the page
from disk. It then resides in the buffer pool until it is later victimized to make room for another page.

e = =

2ipuUG | IDUG virTUAUE =
2020 EMEA Db2 ‘!"“\\\\\\\\\‘

ech Conference ¥ #IDUGDb2

Buffer Pool Basics (1]2)

» A buffer pool is an area of main memory that has been allocated by
the database manager for the purpose of caching Db2 data pages (not
including LOBs and LFs)

* Every database must have a buffer pool and every table space must
be assigned to a buffer pool

e A buffer pool caches the pages of one or more table spaces of the
same page size

e Buffer pool definitions can be found in the SYSBUFFERPOOL catalog
table

LOBs may be cached in the buffer pool if they have been inlined in the table, in which case they exist in normal data pages

810UG | IDUG virTUAUS

ech Conference YW #IDUGDb2

SN

Buffer Pool Basics (2]2)

* There is one default buffer pool (IBMDEFAULTBP) created when the
database is created

* In MPP buffer pools exist on each database partition and are
independently sized

* In pureScale a local buffer pool (LBP) exists on each member and a
group buffer pool (GBP) exists in the CF

IBMDEFAULTBP has a page size of 4K by default unless a registry variable implicitly changes it (i.e. DB2_WORKLOAD=ANALYTICS changes
the default to 32K)

A buffer pool can be created in a specific database partition group so it may not be defined on all nodes

810UG | IDUG virTUAUS

ech Conference W #DUGDb2

Buffer Pool Attributes

* A buffer pool can have a page size of 4, 8, 16, or 32K — same as a table
space

* A buffer pool’s size is defined as a number of pages of the buffer
pool’s page size
* A buffer pool can be set to be automatically resized by STMM

* A buffer pool’s size can be altered dynamically (IMMEDIATE) or be deferred until
the next activation (DEFERRED)

* There are two types of buffer pools

10

810UG | IDUG virTUAUS

ech Conference W #DUGDb2 o= Rt

Page-Based Buffer Pools

e This is the default type of buffer pool

e Contiguous pages on disk are read into non-contiguous pages in the
buffer pool (i.e. scattered or vectored |/0)

e All buffer pool pages are in the “Page Area”

11

1DUG | IDUG virTUAUS

ch Confe! YW #IDUGDb2

Block-Based Buffer Pools

e Contiguous pages on disk are read into contiguous pages in the buffer
pool called blocks (i.e. sequential I/0)

e Better performance for heavy sequential prefetching workloads e.g.
table scans

* Has a "Page Area” and “Block Area” — page area is used for non-
sequential reads (vectored 1/0)

* Block size defined by BLOCKSIZE which should be the same size or
larger than a table space’s extent size

e Limits eviction of high-use single pages since blocks are read into the
block area

=\

Block-based buffer pools are not available in pureScale

Block area can be no larger than 98% of the buffer pool

The block size should be the same as or larger than the tablespace’s extent size or block space will be wasted. If too much is
wasted, Db2 may decide to revert to using the page area. 50% of the block is acceptable to waste before considering vectored

I/0.

12

@10UG | IDUGvirTUAUS

ech Conference W #DUGDb2

Buffer Pools — Into the Deep End! (1]2)

* Every buffer pool consists of three main parts:
e Page array
» Buffer pool Page Descriptor (BPD) array
* Hash Table

* These structures reside in the buffer pool heap

* The page array is the memory that stores the actual
Db2 data pages

13

810UG | IDUG virTUAUS

ech Conference

YW #IDUGDb2

Buffer Pools — Into the Deep End! (2]2)

* The BPD array is the memory that holds BPDs — the metadata

structure that holds info about a given page (i.e. page key, dirty state)
* There is a 1-to-1 relationship between pages and BPDs

* Contains a pointer to the page for which the BPD is associated

* Contain the page/BPD latch

e The Hash Table is used for quickly looking up a BPD for a given
pageKey
* A pageKey is a unique identifier for a page (tablespace ID, object ID, object type,
object page number)

Multiple levels of hashing are used along with memory optimizations to maximize performance.

14

810UG | IDUG virTUAUS

ech Conference ¥ #IDUGDb2

SN

How are Buffer Pools Used?

* When data in a table is first accessed, the page that contains that data is
read from disk into the buffer pool via physical 1/0

e Pages remain in the buffer pool until the database is deactivated or the
buffer pool slot is required for a different page (victimization)

* Page access is controlled via a BPD latch (page latch)
e Buffer pool hit ratio is very important!

* Pages can be modified (dirtied) in the buffer pool and can have contents
different than that on disk

Buffer pool hit ratio is a measure of how often a page request finds the page in the buffer pool without having to read the page from disk

15

ech Conference

p10UG | IDUG virTUAUS

¥ #DUGDb2

Example of “Fixing” a Page

Buffer Pool

16

810UG | IDUG virTUAUS

ech Conference YW #IDUGDb2

Pages — A Love/Hate Relationship

e Pages in the buffer pool have “weights”
* Hints from the previous fixers of a page about whether they anticipate needing the
page again
e There are 3 page weights:
* Hated: fixer will not need the page again
* Unloved: fixer is unsure if it will need the page again
* Loved: fixer will need the page again

Weights age over time. We favor Loved pages, but can’t love them forever.

17

810UG | IDUG virTUAUS

ech Conference YW #IDUGDb2

Page Victimization

e When a fixer needs to read a page from disk into the buffer pool it must
choose a slot to read the page into

* An ideal slot is one that is either empty/not-in-use or one that contains a
hated and clean page

* We track dirty and hated/clean pages to speed up this process

18

9 puG | IDUGvirTUAE = -
2020 EMEA Db2 Tech Conference W #DUGDb2 \\\\\\\\‘

Synchronous vs. Asynchronous I/0

 Synchronous (physical) I/0 is expensive

» Asynchronous I/0 is very powerful!
* E.g. Prefetching and Page Cleaning
* Able to greatly reduce 1/O costs

19

810UG | IDUG viIrTUAUS

W #DUGDb2 . -—-{‘ \\‘\\\~

Prefetching

810UG | IDUG virTUAUS

ech Conference ¥ #IDUGDb2

Prefetching Basics

e In many situations an agent can anticipate which pages are going to be
needed and request that they be read into the buffer pool before they
are needed

 Prefetchers are background EDUs that service agents’ prefetch requests

* The optimizer chooses what type(s) of prefetching to enable for an
ISCAN-FETCH or index scan operation

21

810UG | IDUG virTUAUS

ech Conference YW #IDUGDb2

Prefetch Architecture

* There are two important prefetch structures:

¢ Free Lists
¢ Prefetch Queues

* Typically there are the same number of Free Lists and Prefetch Queues

* There is a fixed amount of prefetch requests created at database
activation — typically just over 10,000

* The number of prefetchers is controlled by the NUM_IOSERVERS
database config parameter

* The table space config PREFETCHSIZE controls how many pages agents
request at once, with some exceptions

i by tt M Privacy P y

SN

Free Lists: linked lists of empty requests that can be “filled out” by an agent
Prefetch Queues: linked lists of “filled out” requests that need to be fulfilled. This list is FIFO

22

BIDUG | IDUG virTUAUS

~h Conference W #DUGDb2

The Life and Times of a Prefetch Request

_Buffer pools
Free Lists n

H -

Agent(

Ko 0 \
Prefetch Queues 0 /'_\./ﬁ'
SR

e |
@
O-0-0-0 n Prefetcher

23

N o Uk WD e

Agent locates an available prefetch request from a free list

Agent populates the prefetch request with info about what pages to prefetch and places it on a prefetch queue
Prefetcher retrieves the populated prefetch request from a prefetch queue

Prefetcher drives logical I/O for requested pages

Physical I/O takes place for any pages that are not already in the buffer pool

Prefetcher resets the prefetch request and places it back on a free list

Agent executes logical I/O for the prefetched pages

23

piDUG | IDUG virTUAUS

xch Conferenc

Primary Prefetch Categories

* Sequential prefetching
* Readahead prefetching
e List prefetching

* Dynamic list prefetching

W #DUGDb2

’ “(i\\\\\\\

24

910UG | IDUG virTUAUS =
»ch Conferenc YW #IDUGDb2 -“‘\\\\\\\\

Sequential Prefetching

Prefetch Prefetch Prefetch Prefetch
Size Size Size Size
(A 14 A \f A W A)
Single page—+
?‘quemh * nge\ch st P(eie(&‘-h"_..-"' ?Memh _...o=" | Prefetching
Stops

Trigger Trigger Trigger Tngger Trigger
Point Point Point Point Point

25

Sequential prefetching works well for table scans since the page numbers would be in order, index scans on nicely-organized indexes, and
while accessing data pages of a clustered index during an ISCAN-FETCH operation.

25

pIDUG | IDUG virTUAUR

~h Conferenc YW #IDUGDb2

Readahead Prefetching
Db2 Index

/ ¥lldifss

1 #0704’ 5 ++ 2 «+ 75+ 50 nb430¢ 8 - 91. 10‘5404.2000856011 4.24

f,

rr 0 IBM ir

Readahead prefetching is used in two cases at the optimizer’s discretion):

- Index scans on disorganized indexes
Accessing data pages for an unclustered index for an ISCAN-FETCH operation

Sequential detection plus readahead prefetching together form smart index and smart data prefetching.

26

2IDUG IDLIG VIRTUAUS

~h Conferen W #DUGDb2

List Prefetching

Unclustered Index Clustered Index

73

B 0 3 e B 4

Select * where name between ‘A’ and ‘I’

iteract with IBM, this serves as your authorizat UG or its ve to provide your cor

Depending on available statistics, the optimizer may choose a RID-LIST plan instead of an ISCAN-FETCH for unclustered indexes. This means
that the index scan alone takes place first, and then the qualifying data page RIDs are sorted before those pages are accessed. After the sorting
phase, we are able to prefetch the appropriate data pages as needed using list prefetching.

27

810UG | IDUG virTUAUS

Tech Conference YW #IDUGDb2

———SN\\

Dynamic List Prefetching — BLU only

Table Scan @ I/O Evaluator

Prefetch

Prefetch

I/O Evaluator
Y
I/O Evaluator

28

Dynamic list prefetching is specific to BLU tables. The idea of this technique is that the BLU query runtime engine may have multiple threads
executing evaluation chains. These chains are composed of multiple evaluators that each perform one operation similar to regular plan
operators. Multiple threads can work on a table such that they perform a straw scan to determine which section of the table to process. Once
that happens, a work unit corresponding to that section of the table flows through the thread’s evaluation chain from evaluator to evaluator.
The TSNs in the work unit are filtered out as it progresses. Since large portions of the table may be filtered, prior to every I/0O evaluator we
prefetch only the data pages for the column that will be required for the subsequent I/O evaluator. We then attempt to hold those work units
in the Prefetch evaluator while other work is done until the prefetched pages are available in the buffer pool, thus minimizing physical I/0
while avoiding prefetching unneeded pages.

28

1DUG | IDUG virTUAUS

ch Confe! YW #IDUGDb2

N
Other Prefetch Notes

* Prefetch support does exist for LOBs

* Multiple types of prefetch requests
e LIST — list of pages to prefetch
* RANGE - starting point for sequential read plus number of pages to read

e |f using page-based buffer pool, all pages are scattered in the page area

e If using block-based buffer pool, and we are prefetching enough pages
from a block, we prefetch the entire block

e The DB2_PARALLEL_IO reg var changes the way Db2 calculates the |/O-
parallelism of a table space.

eract with IBM, this serves a

LOBs may be prefetched into memory buffers instead of into the buffer pool.

LIST request -> vector or block I/0 — depends on if we are using a block-based buffer pool, and a block is available for victimization. Also, we
must be prefetching at least 50% of the pages from the block.
RANGE -> vector or block I/O — depends on if we are using a block-based buffer pool, and a block is available for victimization.

DB2_PARALLEL_|O enables multiple prefetch requests to be driven over table spaces containing multiple containers.

29

810UG | IDUG viIrTUAUS

W #DUGDb2 . -—-{‘ \\‘\\\~

Page Cleaning

= DUG IDUG VIRTUAUS

Tech Conference W #IDUGDb?2

Page Cleaning Basics

* Page cleaners are background EDUs that are

responsible for writing dirty pages to disk T

* The number of page cleaners is configured with

database config NUM_IOCLEANERS

* Writing dirty pages to disk using page cleaners offloads |

I/O from fixers, increasing overall database performance

T

* Ensuring that page changes are written to disk in a timely fashion helps to

ensure a reasonable recovery time in the event of a crash
* There are 2 page cleaning algorithms

ith IBM, this serves as your authorization to IDUG or its vender to provide your contact information to IBM in order for IBM to follow up on your interaction

31

Default number of page cleaners is the same as the number of logical CPU cores, up to a max of 255

31

810UG | IDUG virTUAUS

>h Confel YW #IDUGDb2

Traditional Page Cleaning

* Reactive page cleaning algorithm
* Since cleaning is reactive this algorithm has large bursts of 1/0

* Page cleaners respond to the following triggers to start cleaning:
1. A threshold % of pages have been dirtied in the buffer pool
2. When the logger has requested to clean pages up to an LSN to adhere to a softmax
checkpoint

* Default threshold for page cleaning is 60% dirty, but can be configured
with database config CHNGPGS_THRESH

* Softmax threshold is deprecated in new databases

* Use PAGE_AGE_TRGT_[MCR|GCR] instead, which indicates how many
seconds a page can remain dirty before being written to disk

y th M Privacy P y

N

The softmax concept enables us to limit the number of log files that must be replayed during crash recovery due to dirty pages that have not
been written out.

mcr = member crash recovery

The page_age_trgt_* settings are important in order to ensure pages that are dirty stay in the bufferpool for a number of seconds before being
written out in case they need to be modified again.

gcr = group crash recovery

32

1DUG | IDUG virTUAUS

ch Confe! YW #IDUGDb2

e
Alternate Page Cleaning

e Turned on via reg var DB2_USE_ALTERNATE_PAGE_CLEANING
¢ Default for pureScale and if DB2_WORKLOAD=ANALYTICS

* Proactive page cleaning rather than reactive

* Page cleaners seek to maintain a minimum number of clean victim pages
on the hate lists

* Page cleaners track incoming LSN velocity and try to clean pages at the
same rate.

* Does not respond to database config CHNGPGS_THRESH

* Configured using PAGE_AGE_TRGT_[MCR|GCR]

eract with IBM, this serves a

Pages are consistently cleaned such that bursts of I/O shouldn’t happen

This type of page cleaning will often yield more stable workload performance, particularly for high-1/0 workloads. However, while the average
throughput rate for the workload may be higher with this type of page cleaning, some tests have shown that maximum throughput may be
lower than with the traditional page cleaning algorithm.

There is a push to make APC the default page cleaning algorithm, but there is a possibility that doing so could have a slight negative affect on
certain legacy workloads.

33

p10UG | IDUG virTUAUS

ech Conference

¥ #DUGDb2

Some Key Tuning 1/0 Tips, Tricks, and Best Practices

34

2IDUG IDLIG VIRTUAUN

>h Confel W #DUGDb2

NN

Monitoring 1/0 (1] 3)

* There are multiple ways to monitor 1/O

* For the purposes of I/0 analysis, we will focus on the table functions
MON_GET_BUFFERPOOL, MON_GET_TABLESPACE, and
MON_GET_CONTAINER since they are query-able

* Info on the various return values of those table functions can be found

here:

e https://www.ibm.com/support/knowledgecenter/SSEPGG 11.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0053942.html
e https://www.ibm.com/support/knowledgecenter/SSEPGG 11.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0053943.html|
e https://www.ibm.com/support/knowledgecenter/SSEPGG 11.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0053944.htmi

35

piDUG | IDUG virTUAUS

xch Conferenc YW #IDUGDb2

Monitoring 1/0 (2] 3)

 pool_[data|index|xda|col]_[p]|l]_reads

* pool_temp_[data|index|xda|col]_[p]|l]_reads
* pool_async_[data|index|xda|col]_reads

* pool_[data|index|xda|col]_writes

* pool_async_[data|index|xda|col]_writes

There are too many important monitor elements to list. Here are a few key ones to get started (granularity is pages):

Physical/logical reads for data, index, XDA, and COL objects
Physical/logical reads for data, index, XDA, and COL temporary objects
Asynchronous physical reads for data, index, XDA, and COL objects
Writes for data, index, XDA, and COL objects

Asynchronous writes for data, index, XDA, and COL objects

LBP and GBP variants exist for many of these measures.

pIDUG | IDUG virTUAUR

~h Confel YW #IDUGDb2

Monitoring 1/0 (3] 3)

e Snapshot monitor support in various forms is deprecated in the latest
versions of Db2

* You can also use db2pd -db <dbname> —bufferpools to get information
about each buffer pool

¢ Info on the returned values is available here:

https://www.ibm.com/support/knowledgecenter/SSEPGG 11.5.0/com.ibm.db2.luw.admin.cmd.doc/doc/r0011729.htm
1#r0011729 pdbufferpools

37

onferenc YW #IDUGDb2

How Large Should my Buffer Pool(s) Be? (1]2)
* Typically, bigger is better to avoid physical I/O

* The size of a buffer pool is specified in terms of pages
* Total size of the page area = <number of pages> * <PAGESIZE>

e Specify AUTOMATIC if you would like STMM to be able to resize the
buffer pool

* Enabling AUTOMATIC buffer pool resizing via STMM depends on your

required workload characteristics

e Up to 10% extra memory is required during the resize simulation process

¢ Resizing may impact workload performance

¢ AUTO-resizing enables buffer pools to adapt to changing workload conditions
without re-configuration

M, this serves as your authorizat

910UG | IDUG virTUAUS =
il ——SXNN\

Db2 can handle large buffer pools efficiently

38

910UG | IDUG virTUAUS , —
>h Conferen YW #IDUGDb2 “\\\\\\\\

How Large Should my Buffer Pool(s) Be? (2]2)

* For recommendations on (initial) buffer pool sizing plus other

configuration values, the AUTOCONFIGURE command may be executed
 |f the APPLY NONE clause is used, you are able to see recommendations before they

are applied
e https://www.ibm.com/support/knowledgecenter/SSEPGG 11.5.0/com.ibm.db2.luw.
admin.cmd.doc/doc/r0008960.html

* While sizing the buffer pool, keep in mind other memory requirements

for your workload

e E.g. Db2 BLU requires large amounts of sort heap memory for query processing and
utility heap memory for dictionary management

* AUTOCONFIGURE is able to take many of these requirements into account using the
analytics_envp}ption

t ovide your cor:

AUTOCONFIGURE is a way to invoke the Db2 Configuration Manager manually

39

810UG | IDUG virTUAUS

ech Conference ¥ #IDUGDb2

Should | Separate Objects Across Buffer Pools?

* There is no easy way to answer this question without understanding the
workload(s)

e |f there are multiple workloads that require different usage patterns and
performance characteristics, it may be wise to use separate table spaces
and buffer pools
* Properly sizing multiple buffer pools may be challenging

* One excellent alternative is to leverage block-based buffer pools

whenever possible
¢ Block-based buffer pools effectively make a buffer pool multi-purpose to support
both vectored and block I/O

810UG | IDUG virTUAUS

ech Conference ¥ #IDUGDb2

Configuring Block-Based Buffer Pools (1] 2)

* Reserving between 1 and 5% of the buffer pool for blocks may have a

notable positive impact on workload performance
* The NUMBLOCKPAGES option specifies the total number of pages in the block area
* The BLOCKSIZE option specifies the number of pages in each block

* For optimal performance, table spaces with extent size = BLOCKSIZE
should be bound to the buffer pool

* Once initially configured, it is worth examining monitor output from a
running workload

41

41

810UG | IDUG virTUAUS

>h Conferenc YW #IDUGDb2

Configuring Block-Based Buffer Pools (2] 2)

» At the buffer pool, table space, and container level:
* (pages_from_block_ios/block_ios) should be similar to buffer pool BLOCKSIZE
e |f you know that your access pattern for the buffer pool for part of your

workload should be entirely sequential:
* (block_ios/(block_ios + vectored_ios) * 100) should approach 100
* (pages_from_block_ios/(pages_from_block_ios + pages_from_vectored_ios) * 100)
should approach 100
* |f these guidelines do not hold, consider increasing the buffer pool’s
NUMBLOCKPAGES

42

42

810UG | IDUG virTUAUS

nferen YW #IDUGDb2

Configuring 1/0O Parallelism

e The DB2_PARALLEL_IO reg var can be set to indicate if parallel 1/0 should

be used for table spaces

* This is particularly important if the table space’s container(s) reside on more than
one physical disk, as is the case for some RAID configurations

e Usage is DB2_PARALLEL_IO=[TS ID]:[disks per container],...

* * can be used as a wildcard for TS ID

» Setting this reg var means that a table space’s parallelism will be <num containers> *
<disks per container>

* The table space EXTENTSIZE should be a multiple of the RAID stripe size

43

810UG | IDUG virTUAUS

ech Conference YW #IDUGDb2

SN

Configuring the Number of Prefetchers

* The NUM_IOSERVERS database config param should in most cases be set
to AUTOMATIC
* Db2 does an excellent job selecting an appropriate number of prefetchers

based on multiple factors including 1/O parallelism and number of CPU
cores if set to AUTOMATIC

Formula if num_ioservers=AUTOMATIC:

number of prefetchers = max(max(max over all table spaces(parallelism setting), number of cores * number of SMT threads), 16)

44

810UG | IDUG virTUAUS

ech Conference YW #IDUGDb2

Configuring Table Space Prefetch Size

* The table space PREFETCHSIZE should either be AUTOMATIC (preferred)
or a multiple of (the RAID stripe size * <disks per container>)

* Db2 does an excellent job selecting an appropriate PREFETCHSIZE based
on multiple factors including number of containers if set to AUTOMATIC

45

810UG | IDUG virTUAUS

ech Conference ¥ #IDUGDb2

SN

Configuring Page Cleaners (1]2)

e Setting the NUM_IOCLEANERS database config param to AUTOMATIC is
strongly recommended

* Setting reg var DB2_USE_ALTERNATE_PAGE_CLEANING=ON is also
strongly recommended

* At the buffer pool and table space level:
* ((pool_async_data_writes + pool_async_index_writes + pool_async_xda_writes +
pool_async_col_writes)/(pool_data_writes + pool_index_writes + pool_xda_writes +
pool_col_writes)) * 100 should be at or near 100

e If not, look closer at other page cleaner stats

M, this serves as your authorizat

Formula if num_iocleaners=AUTOMATIC:

number of page cleaners = max(ceil(# CPUs / # local logical database partitions) -1, 1)

810UG | IDUG virTUAUS

nferen YW #IDUGDb2

Configuring Page Cleaners (2| 2)

e [f APC=ON
* The pool_no_victim_buffer element should be low relative to the number of logical
reads
* If not, consider increasing the NUM_IOCLEANERS database config param and/or
decreasing the PAGE_AGE_TRGT_[MCR| GCR] database config params

« If APC=OFF

* The pool_drty_pg_steal_cIns element should ideally be as close to 0 as possible

¢ Consider decreasing the CHNGPGS_THRESH database config param, if the softmax
database config param is non-zero, set it to 0 and instead set the
PAGE_AGE_TRGT_[MCR|GCR] database config params, or if the softmax database
config param was already 0, decrease the PAGE_AGE_TRGT_[MCR| GCR] database
config params

M, this serves as your authorizat

47

810UG | IDUG virTUAUS

nferen YW #IDUGDb2

Other Notable Prefetch-Related Elements

 prefetch_waits and prefetch_wait_time

¢ |deally approaching 0
* |f large values, agents are waiting on prefetchers performing physical 1/0

* Consider increasing table space PREFETCHSIZE and/or db config param
NUM_IOSERVERS

e unread_prefetch_pages

e |deally approaching 0

e If large value, prefetched pages are being evicted before they are used

e Would normally correlate with high synchronous physical reads

* Consider increasing buffer pool size and/or decreasing table space PREFETCHSIZE

43

48

910UG | IDUG viIrTUAUS

ech Conferenc W #DUGDb2 ‘{({“\‘\'\'\\\\

Buffer Pool Hit Ratio — The Key!

e Using the MON_GET_BUFFERPOOL table function, we can

compute the overall buffer pool hit ratio as follows:

* ((pool_data_Ibp_pages_found + pool_index_lbp_pages_found
+ pool_xda_lbp_pages_found + pool_col_Ibp_pages_found
- pool_async_data_lbp_pages_found - pool_async_index_lbp_pages_found -
pool_async_xda_lbp_pages_found - pool_async_col_lbp_pages_found)
/ (pool_data_|_reads + pool_index_|_reads + pool_xda_| _reads + pool_col_|_reads +
pool_temp_data_|_reads + pool_temp_xda_|_reads + pool_temp_index_|_reads +
pool_temp_col_|_reads)) * 100

e After all previous tuning is complete, if this value is still low, consider
other techniques such as creating additional indexes or updating table
space and buffer pool definitions based on the workload

49

If hit ratio is low, consider increasing buffer pool size, increasing prefetch size, adding prefetchers, or increasing size of block area. Also,
consider workload characteristics to see if multiple buffer pools would provide benefit.

49

IDUG

Leading the Db2 User
Community since 1988

Christopher Drexelius
IBM

cdrexeli@us.ibm.com

Chris is a Senior Software Engineer who is product owner for storage and compression for Db2 with BLU Acceleration. This technology is part of
Db2 for Linux, UNIX and Windows, Db2 Warehouse, Db2 on Cloud, IBM Integrated Analytics System (IIAS) and Db2 Big SQL.

50

