
I/O is a fundamental characteristic of Db2 performance. It is not only important to understand I/O access patterns via monitoring, but also to
be able to tune Db2 prefetching and I/O. Optimizing Db2 I/O is critical both for row- and column-organized table performance. Attend this
session to peek behind the curtain at Db2 prefetching and I/O both from a functional and monitoring perspective and learn tips and tricks for
tuning Db2 to maximize I/O throughput.

1

2

3

4

5

6

The application opens a connection to process a statement that is initially handled by the Coordinator Agent. This agent may subdivide the
task across multiple subagents. Depending on the application request, we may or may not execute logical I/O to check the buffer pools for
pages. If a logical I/O is executed, and the desired page does not already exist in the buffer pool, a physical I/O will take place to fetch the page
from disk. It then resides in the buffer pool until it is later victimized to make room for another page.

7

LOBs may be cached in the buffer pool if they have been inlined in the table, in which case they exist in normal data pages

8

• IBMDEFAULTBP has a page size of 4K by default unless a registry variable implicitly changes it (i.e. DB2_WORKLOAD=ANALYTICS changes
the default to 32K)

• A buffer pool can be created in a specific database partition group so it may not be defined on all nodes

9

10

11

• Block-based buffer pools are not available in pureScale
• Block area can be no larger than 98% of the buffer pool
• The block size should be the same as or larger than the tablespace’s extent size or block space will be wasted. If too much is

wasted, Db2 may decide to revert to using the page area. 50% of the block is acceptable to waste before considering vectored
I/O.

12

13

Multiple levels of hashing are used along with memory optimizations to maximize performance.

14

Buffer pool hit ratio is a measure of how often a page request finds the page in the buffer pool without having to read the page from disk

15

16

Weights age over time. We favor Loved pages, but can’t love them forever.

17

18

19

20

21

Free Lists: linked lists of empty requests that can be ”filled out” by an agent
Prefetch Queues: linked lists of “filled out” requests that need to be fulfilled. This list is FIFO

22

1. Agent locates an available prefetch request from a free list
2. Agent populates the prefetch request with info about what pages to prefetch and places it on a prefetch queue
3. Prefetcher retrieves the populated prefetch request from a prefetch queue
4. Prefetcher drives logical I/O for requested pages
5. Physical I/O takes place for any pages that are not already in the buffer pool
6. Prefetcher resets the prefetch request and places it back on a free list
7. Agent executes logical I/O for the prefetched pages

23

24

Sequential prefetching works well for table scans since the page numbers would be in order, index scans on nicely-organized indexes, and
while accessing data pages of a clustered index during an ISCAN-FETCH operation.

25

Readahead prefetching is used in two cases at the optimizer’s discretion):
- Index scans on disorganized indexes
- Accessing data pages for an unclustered index for an ISCAN-FETCH operation

Sequential detection plus readahead prefetching together form smart index and smart data prefetching.

26

Depending on available statistics, the optimizer may choose a RID-LIST plan instead of an ISCAN-FETCH for unclustered indexes. This means
that the index scan alone takes place first, and then the qualifying data page RIDs are sorted before those pages are accessed. After the sorting
phase, we are able to prefetch the appropriate data pages as needed using list prefetching.

27

Dynamic list prefetching is specific to BLU tables. The idea of this technique is that the BLU query runtime engine may have multiple threads
executing evaluation chains. These chains are composed of multiple evaluators that each perform one operation similar to regular plan
operators. Multiple threads can work on a table such that they perform a straw scan to determine which section of the table to process. Once
that happens, a work unit corresponding to that section of the table flows through the thread’s evaluation chain from evaluator to evaluator.
The TSNs in the work unit are filtered out as it progresses. Since large portions of the table may be filtered, prior to every I/O evaluator we
prefetch only the data pages for the column that will be required for the subsequent I/O evaluator. We then attempt to hold those work units
in the Prefetch evaluator while other work is done until the prefetched pages are available in the buffer pool, thus minimizing physical I/O
while avoiding prefetching unneeded pages.

28

LOBs may be prefetched into memory buffers instead of into the buffer pool.

LIST request -> vector or block I/O – depends on if we are using a block-based buffer pool, and a block is available for victimization. Also, we
must be prefetching at least 50% of the pages from the block.
RANGE -> vector or block I/O – depends on if we are using a block-based buffer pool, and a block is available for victimization.

DB2_PARALLEL_IO enables multiple prefetch requests to be driven over table spaces containing multiple containers.

29

30

Default number of page cleaners is the same as the number of logical CPU cores, up to a max of 255

31

The softmax concept enables us to limit the number of log files that must be replayed during crash recovery due to dirty pages that have not
been written out.

mcr = member crash recovery
The page_age_trgt_* settings are important in order to ensure pages that are dirty stay in the bufferpool for a number of seconds before being
written out in case they need to be modified again.
gcr = group crash recovery

32

Pages are consistently cleaned such that bursts of I/O shouldn’t happen

This type of page cleaning will often yield more stable workload performance, particularly for high-I/O workloads. However, while the average
throughput rate for the workload may be higher with this type of page cleaning, some tests have shown that maximum throughput may be
lower than with the traditional page cleaning algorithm.

There is a push to make APC the default page cleaning algorithm, but there is a possibility that doing so could have a slight negative affect on
certain legacy workloads.

33

34

35

There are too many important monitor elements to list. Here are a few key ones to get started (granularity is pages):

- Physical/logical reads for data, index, XDA, and COL objects
- Physical/logical reads for data, index, XDA, and COL temporary objects
- Asynchronous physical reads for data, index, XDA, and COL objects
- Writes for data, index, XDA, and COL objects
- Asynchronous writes for data, index, XDA, and COL objects

LBP and GBP variants exist for many of these measures.

36

37

Db2 can handle large buffer pools efficiently

38

AUTOCONFIGURE is a way to invoke the Db2 Configuration Manager manually

39

40

41

42

43

Formula if num_ioservers=AUTOMATIC:
number of prefetchers = max(max(max over all table spaces(parallelism setting), number of cores * number of SMT threads), 16)

44

45

Formula if num_iocleaners=AUTOMATIC:
number of page cleaners = max(ceil(# CPUs / # local logical database partitions) - 1, 1)

46

47

48

If hit ratio is low, consider increasing buffer pool size, increasing prefetch size, adding prefetchers, or increasing size of block area. Also,
consider workload characteristics to see if multiple buffer pools would provide benefit.

49

Chris is a Senior Software Engineer who is product owner for storage and compression for Db2 with BLU Acceleration. This technology is part of
Db2 for Linux, UNIX and Windows, Db2 Warehouse, Db2 on Cloud, IBM Integrated Analytics System (IIAS) and Db2 Big SQL.

50

