
REBIND Phase-In

DB2 for z/OS
Function Level V12R1M505

Tammie Dang
IBM Corporation

March 2021

1

Agenda

▪ Problem Statement and Solution Statement

▪ Use Cases (As-is vs To-be scenarios)

▪ REBIND PACKAGE PLANMGNT review

▪ REBIND Phase-In feature

▪ Recent Enhancements

▪ Questions

2

Overview and Problem, Solution Statements

3

Db2 Problem Statement

• In order for a DBA to enable new features by changing bind options or make changes to access

paths for application packages that are currently being used, the DBA must

• wait for a window in which the applications aren’t running (unreasonable, not realistic)

• take an application outage (disruptive), or

• use a cumbersome workaround (unacceptable overhead).

• Applications (24x7 availability) are continuously executed by several threads

• REBIND the packages with the new APPLCOMPAT to deploy new application feature

• REBIND SWITCH when an access path regression is observed

Rebind activity cannot complete (requires all threads that are executing the package to

quiesce)

With the requirement for 24x7 application availability, it is nearly impossible for the DBA to

find a time when the rebind can run in an efficient manner.

Note: Db2 11 REBIND break in addresses RELEASE(DEALLOCATE) packages

4

5

Thread 1 executing package A

REBIND PACKAGE A

Thread 2 executing package A

REBIND PACKAGE A

REBIND PACKAGE A

Thread 3 executing package A

REBIND PACKAGE A

Db2 Problem Statement (specific)

6

Threads are executing a package. Concurrently, a REBIND PACKAGE subcommand is issued against

the same package and fails with the following message:

DSNT500I -DB2A DSNTBRB2 RESOURCE UNAVAILABLE

REASON 00E30083

TYPE 00000801

NAME COLL1.TEST19.1A92DAA90F08133F

Solution Overview

7

To improve usability, it’d be ideal if Db2 can allow REBIND to work

concurrently with application execution by generating a new copy. The

new copy of the package will be phased in for execution for future

threads.

A Db2 for z/OS DBA can enable new Db2 application features for

existing packages via REBIND without waiting for a window of

opportunity, without incurring an outage, without performing a complex

workaround, and without impacting application performance.

Example Scenarios

8

As-is scenario 1

1. Application developer implements and tests a new dynamic SQL statement (SELECT
LISTAGG(C1) FROM T1) in a JCC application. The LISTAGG BIF is available with
APPLCOMPAT(V12R1M501) in test system.

2. System administrator activates function level V12R1M501 in production system

3. Application developer codes the new SQL syntax and requests the JCC packages to
be rebound with APPLCOMPAT(V12R1M501) in production system

4. The DBA quiesces all threads executing JCC applications, then rebinds the packages
with APPLCOMPAT(V12R1M501)

5. Application developer schedules the application to be executed in production system

9

As-is scenario 2

1. Application developer implements and tests a new dynamic SQL statement (SELECT
LISTAGG(C1) FROM T1) in a JCC application. The LISTAGG BIF is available with
APPLCOMPAT(V12R1M501) in test system.

2. System administrator activates function level V12R1M501 in production system

3. Application developer codes the new SQL syntax and requests the JCC packages to be
rebound with APPLCOMPAT(V12R1M501)

4. The DBA binds copy the JCC packages to another collection ID.

5. The DBA inserts a row for CURRENT PACKAGE PATH in the Db2 Profile table with the new
collection ID and restarts profile. - Or –

6. The new collection ID is specified in the JCC DataSource property and application server is
recycled

10

As-is scenario 3

1. The DBA rebinds an application package with static SQL statements on the weekend while

application is not running. New access paths are chosen.

2. Monday morning, applications are executed and experience performance regression.

3. The DBA brings down all threads executing the application in order to rebind switch the

package back to the previous copy

4. Applications are executed again with the previous access paths after the outage.

11

To-be Scenarios

12

To-be scenario 1

1. Application developer implements and tests a new dynamic SQL statement (SELECT
LISTAGG(C1) FROM T1) in a JCC application. The LISTAGG BIF is available with
APPLCOMPAT(V12R1M501) in test system.

2. System administrator activates function level V12R1M505 in production system

3. Application developer requests the JCC packages to be rebound with
APPLCOMPAT(V12R1M501) in production system.

4. Threads are executing JCC packages with APPLCOMPAT(V12R1M500).

5. The DBA issues the REBIND PACKAGE command with APPLCOMPAT(V12R1M501)
for the JCC packages successfully. New copies of the packages are committed.

6. New threads executes package using the copy with APPLCOMPAT(V12R1M501),
including the new LISTAGG application.

7. Threads existed prior to REBIND continue to execute packages using the copy with
APPLCOMPAT(V12R1M500). Eventually when these threads finish, Db2 can free
these old copies.

13

To-be scenario 2

1. The DBA rebinds an application package with static SQL statements on the weekend

while application is not running. New access paths are chosen.

2. On Monday morning, applications were executed and experience performance

regression.

3. The DBA issues the REBIND SWITCH command to switch the package back to the

previous copy. The command is successful and creates a new copy with the previous

access paths.

4. Existing threads continue to execute with regressed access paths created on the

weekend.

5. New threads execute the package copy with the previous (stable) access paths.

14

REBIND Phase-in

15

REBIND PACKAGE existing support

• PLANMGMT bind option allows Db2 to create copies of the rebound

package
• Copies are created prior to changing the package

• Copies contain older (stable, preferred) access paths

• Can switch between copies of package to overcome performance regression

16

REBIND PACKAGE existing support

• PLANMGMT(EXTENDED)
- CURRENT (copy ID 0) in SYSPACKAGE, SYSPACKDEP, SPTR
- ORIGINAL (copy ID 2) in SYSPACKCOPY, SYSPACKDEP, SPTR
- PREVIOUS (copy ID 1) in SYSPACKCOPY, SYSPACKDEP, SPTR

• PLANMGMT(BASIC)
- CURRENT and PREVIOUS copies

• PLANMGMT(OFF)
- CURRENT copy only
- Enforced when change OWNER, QUALIFIER, PATH, PATH_DEFAULT,

DISABLE/ENABLE, IMMEDIATEWRITE, SYSTIMESENSITIVE,
BUSTIMESENSITIVE, ARCHIVESENSITIVE

17

REBIND PACKAGE existing support

• REBIND SWITCH to swap between copies

• FREE PACKAGE PLANMGMTSCOPE(ALL) deletes all copies

• FREE PACKAGE PLANMGMTSCOPE(PREVIOUS|ORIGINAL|

INACTIVE)

• EXPLAIN PACKAGE COPY(PREVIOUS|ORIGINAL)

• Serialization between executing threads and DDL, Rebind via

package lock
• Execution: S state

• REBIND: SIX state

• DDL: X state

• Copy ID 3 used for APREUSE(PREVIOUS|ORIGINAL) bind option

18

REBIND Phase-In

• Threads executing CURRENT package copy (copy ID n)

• REBIND
- Obtain SIX lock* followed by U lock on package name
- Create a new CURRENT copy of the package with a new copy ID (n+1)
- Move copy ID n to SYSPACKCOPY as the phased-out copy
- Replicate phased-out copy (n) to copy ID 1 (previous) and 2 (original) if

needed

• New threads load and execute new CURRENT copy (n+1)
when that copy is committed

19

REBIND Phase-In Example

20

Thread 1 – copy ID 0

Thread 2 – copy ID 0

Thread 3 – copy ID 0

Thread 4 – copy ID 4

REBIND – copy ID 4: CURRENT COMMIT

REBIND Phase-In

• Current copy
- 1 row in SYSPACKAGE. Note COPYID column
- Copy ID generated as 0, 4, 5, 6, .., 16 then wrap back

• Phased-out copies
- In SYSPACKCOPY (with COPYID other than 1, 2)
- Cleaned up on subsequent REBIND

• EXPLAIN PACKAGE COPY copy-id
- CURRENT: the copy ID in SYSPACKAGE.COPYID column (0 or non-

0)
- Omit COPY: copies CURRENT, PREVIOUS, ORIGINAL

21

REBIND SWITCH Phase-In

• Threads are executing CURRENT copy ID (n)

• REBIND SWITCH:
- Obtain SIX lock* followed by U lock on package
- Copy PREVIOUS or ORIGINAL to new CURRENT copy ID

(n+1)
- Copy n becomes the phased-out copy
- Replicate phased-out copy (n) into PREVIOUS and

ORIGINAL if needed

• New threads can execute new CURRENT (n+1)

22

REBIND Phase-In Eligibility

• Requires FL 505 or above -> an Always-On feature

• Initial support:
- PLANMGMT(EXTENDED) APREUSE(NO)

- PLANMGMT(EXTENDED) APREUSE(YES)

APREUSESOURCE(CURRENT)

• Limitation:
• Package for native SQL routine & advanced trigger

23

Phased-out Copy cleanup

• Phased-out copy clean up on subsequent REBIND
- Compare current thread’s allocation time to phased-out copy’s

time

- Query package lock holders

- DSNT500I message with new reason code 00E30307 (max
number of copy IDs has been reached)

- New IFCID 393 to identify the oldest thread which prevents
the phased-out copies from being deleted

(long running thread with RELEASE(DEALLOCATE),

uncommitted thread, etc)

24

IFCID 393

• Which thread to recycle?

QW0393 DSECT IFCID(QWHS0393)

QW0393COLLID_Off DS H Offset from QW0393 to

* collection ID

QW0393PK_Off DS H Offset from QW0393 to

* package ID

QW0393CONTKN DS CL8 Package consistency token

QW0393THDTKN DS F Thread token of the thread that prevents

* phased-out copies from being freed

QW0393MEMBER DS CL8 Member name where thread is

QW0393THDTS DS CL13 Thread's package allocation timestamp

DS CL3 Available

QW0393THDCT DS D (S)

25

Rebind Phase-In

• Which copy does a thread execute?
• Package account trace
QPAC DSECT
QPACPKNM DS 0CL60 /*PACKAGE NAME */
QPACLOCN DS CL16 /* %U LOCATION NAME */
* /* Truncated if QPACLOCN_Off¬=0 */
QPACCOLN DS CL18 /* %U PACKAGE COLLECTION ID */
* /* Truncated if QPACCOLN_Off¬=0 */
QPACPKID DS CL18 /* %U PROGRAM NAME */
* /* Truncated if QPACPKID_Off¬=0 */
QPACCONT DS CL8 /*CONSISTENCY TOKEN - 64 BIT */
* /*UNSIGNED BINARY INTEGER */
* .
QPACA313 EQU *
QPAC_PIPE_WAIT DS XL8 /* accumulated wait time for a pipe while */
* /* executing this package */
QPAC_PIPEWAIT_COUNT DS F /* number of wait trace events processed */
* /* for waits for a pipe while executing */
* /* this package */
QPAC_COPYID DS F /* Package copy ID */
QPACEND DS 0C

26

Catalog Query

SELECT NAME, COPYID, VALID, TIMESTAMP, BINDTIME, PLANMGMT
FROM SYSIBM.SYSPACKAGE

WHERE NAME=‘xx';

SELECT NAME, COPYID, VALID, TIMESTAMP, BINDTIME
FROM SYSIBM.SYSPACKCOPY

WHERE NAME=‘xx';

SELECT BNAME, BTYPE, DTYPE, COPYID
FROM SYSIBM.SYSPACKDEP

WHERE DNAME=‘xx';

SELECT HEX(SPTRESV) AS COPYID, HEX(SPTSEC) AS SECTION,
HEX(SPTSEQ) AS SEQUENCE

FROM SYSIBM.SPTR
WHERE SPTNAME=‘xx';

27

Catalog Query

After REBIND APPLCOMPAT(V12R1M501)

28

COLLID NAME COPYID APPLCOMPAT Note

NULLID SYSLH100 0 V12R1M500 Current copy

COLLID NAME COPYID APPLCOMPAT Note

NULLID SYSLH100 4 V12R1M501 Current copy

COLLID NAME COPYID APPLCOMPAT Note

NULLID SYSLH100 0 V12R1M500 Phased-out copy

NULLID SYSLH100 1 V12R1M500 Previous copy

NULLID SYSLH100 2 V12R1M500 Original copy

SYSPACKAGE

SYSPACKAGE

SYSPACKCOPY

Catalog Query

After REBIND SWITCH(ORIGINAL)

29

COLLID NAME COPYID APPLCOMPAT Note

NULLID SYSLH100 5 V12R1M500 Current copy

SYSPACKAGE

SYSPACKCOPY

COLLID NAME COPYID APPLCOMPAT Note

NULLID SYSLH100 4 V12R1M501 Phased-out copy

NULLID SYSLH100 1 V12R1M501 Previous copy

NULLID SYSLH100 2 V12R1M500 Original copy

Rebind Phase-In Recommendations

30

• Discourage use of –F DDF,PKGREL(BINDPOOL) to prevent DBAT executes

new copy then a phased-out copy

• High performance DBAT honors RELEASE(DEALLOCATE) and is recycled

after 200 UOW’s or 120 seconds (subsystem parameter POOLINAC)

• CICS protected threads should set REUSELIMIT = 1000 (default) to pick up

new copy

• IMS Fast Path:

• “true” Wait For Input (WFI) region type: threads can stay for weeks

• Use Pseudo WFI region type instead (2-3 reuses before recycle)

• PTF UI73874 (APAR PH28693): Rebind always creates a new copy to ensure

true concurrency with subsequent executing threads

Rebind Phase-in with SIX lock

31

Thread 2 waits for S lock

REBIND holds SIX lock COMMIT

Rebind Phase-in with SIX lock

32

Thread 1 holds S lock

Thread 2 waits for S lock

REBIND waits for SIX lock holds U lock COMMIT

Rebind Phase-in without SIX lock
(APAR PH28693)

33

Thread 1 holds S lock, executing copy ID 0

Thread 2 holds S lock, executing copy ID 0

REBIND holds U lock, generates copy ID 4 COMMIT

Thread 4 – copy ID 4

34

Workload Description

OLTP+ Batch • A batch job at the beginning of the run

• OLTP like workload

• Rebind while workloads are running.

•Distributed Program 2- Select-no Commit(OLTP+BATCH ONLY)

•Rebind / Rebind /Rebind/…………………………..…/Rebind

•Distributed Program (200 threads)- Perform unit of work (OLTP trans)

• Note: Rebind JCC package SYSLH200 only because the distributes application

only touches this package.

• Package SYSLH200 is rebound every 45 seconds during the measurement period.

Performance Study

35

Function Level Elapsed Time

(no Rebind vs Rebind)

CP Time

(no Rebind vs Rebind)

Rollback

(no Rebind vs Rebind)

FL500 Increases from 51ms to

32s

Increases from 76µs to

118 µs

1/3 transactions

FL505 Increases from 51ms to

114ms

No CPU impact 0.17% transactions

FL505+APAR PH28693 No elapsed time impact No CPU impact No roll back

Performance Observation

36

V12R1M500 V12R1M505 V12R1M505+APAR

NO REBIND REBIND NO REBIND REBIND NO REBIND REBIND

CL1ET 0.050875 31.678713 0.050833 0.113982 0.050953 0.050955

CL2ET 0.000174 29.572873 0.000170 0.063355 0.000186 0.000187

CL1CP 0.000119 0.000169 0.000118 0.000125 0.000130 0.000130

CL2CP 0.000067 0.000112 0.000067 0.000067 0.000072 0.000073

CL1SECP 0.000169 0.000200 0.000168 0.000179 0.000187 0.000187

CL2SECP 0.000090 0.000128 0.000089 0.000090 0.000097 0.000097

TotalCL1CP 0.000139 0.000181 0.000138 0.000147 0.000153 0.000153

TotalCP2CP 0.000076 0.000118 0.000076 0.000076 0.000082 0.000083

Rebind Success NA 0 NA 13 NA 13

Rebind Error NA 7 NA 0 NA 0

Transaction Commit 2358744 2221 2360207 1052726 2352627 2352559

Transaction Rollback 0 1200 0 1819 0 0

Technical Data- BATCH+OLTP Workload

Question and Answer

◼ Contact Information
◼ Tammie Dang, tammied@us.ibm.com

37

THANK YOU

mailto:bossman@us.ibm.com

