
Performance problems come in many flavors, with many different causes and many different solutions. I've run into a number of these that I
have not seen written about or presented elsewhere and I want to share these with you - not just the specific problem/solution, but also the
process of identifying and solving the problem.

Joe Geller has been a Db2 consultant since Version 1.2. He's been a Data Architect, DBA, Data Modeler and Software Engineer, often

simultaneously. He feels that the best way to learning one aspect of a system is to work on all aspects. Joe specializes in performance tuning. He

once rewrote a Peoplesoft view and improved the query by a factor of 70,000. Joe is the author of two books on database systems - DB2

Performance and Development Guide and IMS Administration, Programming and Data Base Design. Currently Joe is working as a database
performance specialist for JPMorgan Chase. Joe is an IBM Information Champion and a leader on the IDUG Content Committee.

1

2

Arrays are a very commonly used programming language construct, but have limited support within relational databases. Although an XML
document or JSON can have array elements, tables within Db2 cannot have an array as an ordinary column. Db2 however does support array
data types, which can be created (CREATE TYPE statement). These can be used in global variables and local variables declared in compound
SQL (such as in a native SQL Stored Procedure) and as a parameter to a SQL or Java routine.

3

4

5

Unnest returns a table – what is the cardinality (#rows)? At bind time, Db2 has no way of knowing how many entries there will be in the array.
There is no syntax for telling Db2 how many to expect. Therefore Db2 assumes (for cost estimating) the array has the maximum size it is
created as (up to 1000). In the above example it will assume there are 100 elements

What’s wrong with that? Well, the cost of getting 100 customers will be 100 times as much as getting 1 customer. If you usually only pass in 1
or 2 cust_ids, this is way too high. If there are other predicates and indexes on those predicates, another access path may be cheaper than
using the cust_id index if there are 100 entries, but much more expensive than if there is 1 entry.

What can we do? Selectivity to the rescue. The Selectivity clause on a predicate lets you override Db2’s filter factor for that predicate. What I
do for this situation is to add an unnecessary predicate:

CUST_ID IN (SELECT CUSTID) FROM UNNEST(CUST_IDS) AS LIST(CUSTID) WHERE CUSTID IS NOT NULL SELECTIVITY .01)

The predicate does nothing (any entries in the array will not be NULL), but that the filter factor is .01. Since Db2 is assuming that the result
table has 100 rows, a filter factor of .01 means that only 1 row will be selected from the unnested table.

6

7

There are times that Db2 just cannot get a good estimate for a predicate, no matter how thorough your runstats was (including distribution
stats, column groups, etc.).

Using host variables or parameter markers rather than literals is a good practice for dynamic statement reuse and for flexibility in coding for
static SQL. One statement can be used for different values in the predicates. But with host variables, Db2 cannot use distribution statistics to
get a more accurate estimate. It must use an average value (based on the cardinality of the column).

A range predicate with a host variable is an even worse situation. Are you asking for a small range or a very large range? The filter factor that
Db2 uses depends on the cardinality of the column. A high cardinality column (e.g. Shipped Timestamp) results in a low filter factor. But, often
for a timestamp column you want a large range – a day, a week, a month (e.g. find all orders shipped in the last month).

For these situations, you could use REOPT which will have Db2 calculate a new access path each time the statement is executed, but that adds
overhead. If you know the predicate will be satisfied by a particular percentage of the rows, then Selectivity is a very simple and effective
solution.

8

9

What do I mean by lying? If Db2 calculates a FF of .03 and you know it is closer to .2, you could use Selectivity .2. But, Db2 may still pick a
different access path because other FF estimates are also inexact. With experimentation you may find that using Selectivity .9 will lead to a
better access path. It should be possible to achieve the same result by using Selectivity on more of the predicates, but it can be complex. The
simpler solution of adjusting 1 predicate has appeal. Of course you should put in a comment describing what you are doing (if you are going to
lie, you should at least be truthful about it).

Because of the complex interplay between multiple predicates and filter factors, it is sometimes hard to get the exact access path you want
(which doesn’t mean what you want is really best). Optguidelines allow you to tell Db2 what access path to use. But of course, you are then
taking Db2’s intelligence out of the equation. If you are not smarter than Db2, you can ask for a worse performing access path.

10

The guideline is in XML format and in the form of a comment /*….. */

It must be the last part of the statement.

11

If the optguideline is after the ; then it is not part of the statement and is ignored.

12

If the optguideline is not the very last part of the statement, it is treated as a comment and is ignored.

13

14

When multiple rows of the inner table hash to the same bucket, a chain is built of all of these keys. When a row of the outer tables hashes to
that bucket, Db2 must search that chain for the matching key.

15

IBM (and other experts) sometimes give tuning advice as though one solution or best practice, will fit all customers. But each db is unique –
some are designed well (tables, indexes and keys) and some are not. Access patterns also vary greatly even within one db.

16

17

Phil Nelson and Martin Hubel have had excellent results from using a small block based area (sometimes as small as 1000 pages). IBM doesn’t
seem to get this and has talked about removing this feature. However, in his most recent article for the IDUG Content Blog, IBM’s Steve Rees
did conceed that it could sometimes be useful (DB2 LUW ‘PERFORMANCE FIRST AID’ WITH MONREPORT.DBSUMMARY

http://www.idug.org/p/bl/ar/blogaid=625).

18

19

20

21

For example, for purging purposes you might have chosen last_update_date or created_date as the partitioning key. But if the queries typically
use ship_date as a predicate, you do not get any partition elimination. It would be better for query performance to be partitioned by
ship_date.

Of course, some of the queries may not have a predicate on ship_date either. If that is the case, you should see if such a predicate could be
added. For example, if you are inquiring on orders ordered in the last week or month, then ship_date must also be greater than that (or NULL).
So a predicate on ship_date could easily be added.

22

23

24

Why do some people have such low cardinality indexes? Typically it would be to find the “open” or “pending” rows for batch processing. In
this case, it is necessary to have distribution stats on the column and to use literals for the predicate. Otherwise Db2 has to assume a uniform
distribution.

25

Index on Expression was introduced in V10.5. Without IOE (also called functional indexes), in order to get index access you had to add an
additional column (derived on the expression) to the table and create an index on that column.

26

27

In general, using a function or expression on a column in a predicate makes that expression non-indexable. This was always true up until a few
releases ago. If you have an index on that column, you could manually write the predicate to avoid the use of the function or to move the
expression to the other side of the operator. Now, during the query rewrite phase, Db2 can rewrite some of these predicates into a form that is
indexable.

28

This is a major limitation of any dbms – to accurately estimate the FF for predicates comparing a date / timestamp to the current date /
timestamp.

29

30

31

If you have a clustering index, Db2 will attempt to insert new rows near the existing rows in key order. If there is no freespace on that page, the
new row will have to go on a different page. A reorg will move the data rows around to store them in strict index order. Setting PCTFREE > 0
for the table will leave freespace on each page during the reorg (so that new index inserts can find room on that page).

Over time, any freespace left during a reorg (the % specified by PCTFREE) will get used by newly inserted rows and updates to existing rows that
increase the size of the row.

The reorg will not only put the rows in clustering order (if there is a clustering index), but it will also move rows from a page that no longer has
PCTFREE percent of the page free (because it has to bring each page back to that percent of freespace).

If there are pages with more than PCTFREE freespace (because of row deletes), Db2 will move rows to these pages to reduce the amount of
freespace back down to PCTFREE.

Overflows are created when a row is updated, the new length of the row is larger, and there is not enough room on the page for the
enlargened row. The row is moved to another page, but an anchor is left on the original page (pointing to the row’s new location). This way,
the indexes do not have to be updated to point to the new location. A reorg will eliminate overflows by updating the indexes and removing the
anchor.

32

Some shops do not have clustering indexes (or may have them on some tables but not all). Even if you have a clustering index, the table may
not get out of clustering order too often for several reasons and overflows are a bigger concern. The rate of inserts might be low, but updates
occur frequently. Or, online access to them reads only 1 or 2 rows so it is not critical that the rows be in clustering order.

Overflows on the other hand are a concern, especially for batch processing (table scans). Each read of a row that has an overflow requires
access to 2 pages – the original (which has the anchor) and the one with the actual row. For a single row that will mean 2 logical reads instead
of 1 and possibly an extra physical read (if the page is not in the bufferpool). 1 extra read does not take a lot of time. A table scan on the other
hand reads all of the pages with sequential prefetch, which reads multiple pages asynchronously. When it finds an overflow, it has to do a
synchronous read of the new page (if not in the bufferpool). The relative effect is thus much greater.

33

34

35

36

If you want to get every single statement and not miss the ones that are flushed, you can use a package cache event monitor to capture all
statements.

37

Every unique dynamic statement get a row. If there are variation such as different status codes or type columns, you will get a few rows in the
cache. But if literals are used for ID columns, then every single execution will be a unique statement and will get a separate row in the package
cache.

38

39

40

41

42

43

44

45

46

47

Hit ratio is not a column in the package cache, but it is easy to calculate.

48

49

50

51

52

53

54

55

