
© 2018 IBM Corporation

SQL Enhancements Delivered with Db2 12 for z/OS

Robert Catterall, IBM
rfcatter@us.ibm.com

Tridex

March 27, 2018

© 2018 IBM Corporation2

§Temporal enhancements
§Enhancements related to transparent archiving
§Advanced triggers
§SQL PL enhancements
§The new and improved MERGE statement
§SQL pagination
§Piece-wise DELETE
§Array and global variable enhancements
§ “Real” Unicode columns in EBCDIC tables
§ “Local” ODBC driver enhancements
§Optional correlation clause for table expressions
§New built-in functions
§Native REST interface

Agenda

© 2018 IBM Corporation3

§Track “what” and “who” of data changes via two GENERATED ALWAYS AS columns
- What: GENERATED ALWAYS AS (DATA CHANGE OPERATION)

• Possible values: ‘I’ for INSERT, ‘U’ for UPDATE, ‘D’ for DELETE
- Who: GENERATED ALWAYS AS (SESSION_USER)

• Or CURRENT SQLID, or CURRENT CLIENT_WRKSTNNAME, or CURRENT CLIENT_USERID, …
- Also available in Db2 11 environment (APAR PM99683)

§Example:

System-time temporal: tracking data changes

ACCOUNT_ID BALANCE USER OP_CODE SYS_START SYS_END
Table BANK_ACCOUNT

GENERATED ALWAYS AS (SESSION_USER) GENERATED ALWAYS AS (DATA CHANGE OPERATION)

© 2018 IBM Corporation4

Temporal data-change tracking in action
1. User JOE inserts row for ACCOUNT_ID 56789

ACCOUNT_ID BALANCE USER OP_CODE SYS_START SYS_END
56789 1234.56 JOE I 2017-01-19 9999-12-30

BANK_ACCOUNT

ACCOUNT_ID BALANCE USER OP_CODE SYS_START SYS_END
56789 88.77 DON U 2017-01-21 9999-12-30

2. User DON updates the row

ACCOUNT_ID BALANCE USER OP_CODE SYS_START SYS_END
56789 1234.56 JOE I 2017-01-19 2017-01-21

BANK_ACCOUNT_HIST

ACCOUNT_ID BALANCE USER OP_CODE SYS_START SYS_END

ACCOUNT_ID BALANCE USER OP_CODE SYS_START SYS_END
56789 1234.56 JOE I 2017-01-19 2017-01-21

56789 88.77 DON U 2017-01-21 2017-02-15

56789 88.77 LAURA D 2017-02-15 2017-02-15

BANK_ACCOUNT

3. User LAURA deletes the row

BANK_ACCOUNT

BANK_ACCOUNT_HIST

“Extra” history row for DELETE:
specify ON DELETE ADD EXTRA
ROW on ALTER statement that
activates versioning

© 2018 IBM Corporation5

§Before Db2 12: business time start/end dates had inclusive/exclusive meaning

§Some users said, ”That’s not how we think of business time dates,” so Db2 12
provides an inclusive/inclusive option for business time dates (V12R1M500)

Business-time temporal: support for inclusive/inclusive

POLICY_ID COVERAGE BUS_START BUS_END

A123 20000 2016-01-01 2016-07-01

A123 30000 2016-07-01 2016-09-01

A123 20000 2016-09-01 2018-01-01

First day on which coverage of 20000 will be in effect

First day on which coverage of 20000
will NOT be in effect

POLICY_ID COVERAGE BUS_START BUS_END

A123 20000 2016-01-01 2016-06-30

A123 30000 2016-07-01 2016-08-31

A123 20000 2016-09-01 2017-12-31

Last day on which coverage of 20000
will still be in effect

© 2018 IBM Corporation6

§To get it: use new INCLUSIVE (or EXCLUSIVE) keyword in DDL

§CHECKCONDITION column of SYSIBM.SYSCHECKS shows option in use:

- For inclusive/inclusive, you’ll see “BUS_END” >= “BUS_START”

- For inclusive/exclusive you’ll see “BUS_END” > “BUS_START”

§Note that form of a temporal update is a little different when

INCLUSIVE/INCLUSIVE is used, versus INCLUSIVE/EXCLUSIVE:

- For inclusive/inclusive, specify BETWEEN <value1> AND <value2>

- For inclusive/exclusive, specify FROM <value1> TO <value2>

More on business-time inclusive/inclusive option

CREATE TABLE ...PERIOD BUSINESS_TIME (BUS_START, BUS_END INCLUSIVE)

If not specified,
defaults to EXCLUSIVE

© 2018 IBM Corporation7

§Prior to Db2 12: multiple changes to a row in a single unit of work will not be
reflected in system-time history table

System-time: temporal logical transactions

INSERT at timestamp 2017-01-19-12.34.00 – no commit

ACCOUNT_ID BALANCE FEE OP. SYS_START SYS_END
56789 1234.56 1.00 I 2017-01-19-12.34.00 9999-12-30-....

Same transaction: update at timestamp 2017-01-19-12.35.17 – then commit

Base table BANK_ACCOUNT

ACCOUNT_ID BALANCE FEE OP. SYS_START SYS_END
56789 987.12 1.00 U 2017-01-19-12.35.17 9999-12-30-....

ACCOUNT_ID BALANCE FEE OP. SYS_START SYS_END
History table BANK_ACCOUNT_HIST

No “before” image of updated row in history table, because UPDATE occurred in same unit of work as INSERT

© 2018 IBM Corporation8

§Now possible to de-couple physical transactions and creation of history table records
§Scenario: multiple physical transactions, one temporal logical transaction
- Maybe you want changes made by multiple UOWs of a batch job to have same “start” time

§Scenario: multiple TLTs in one physical transaction
- Referring to previous slide, maybe you want effect of UPDATE reflected in history table

Db2 12: temporal logical transactions (TLTs) enable new behavior

physical transaction physical transaction

temporal logical transaction

physical transaction

temporal logical
transaction

temporal logical
transaction

temporal logical
transaction

(V12R1M500)

© 2018 IBM Corporation9

§TEMPORAL_LOGICAL_TRANSACTION_TIME
- Provides “start” timestamp value for row versioning in base table for a TLT

- Default value is NULL (in which case TLT functionality is not in effect)

§TEMPORAL_LOGICAL_TRANSACTIONS
- When set to 1, there can be multiple TLTs within a single physical transaction

• Note: multiple changes to a row in one TLT will result in one history table row insert

- Default value of 0 means multiple TLTs in one physical transaction not allowed

Temporal logical transactions: two new global variables

© 2018 IBM Corporation10

TLT functionality in action

INSERT new account at 2017-01-19-12.34.00 – no commit

ACCOUNT_ID BALANCE FEE OP. SYS_START SYS_END
56789 1234.56 1.00 I 2017-01-19-14.00.00 9999-12-30-23.59.99....

Same physical transaction: update at 2017-01-19-12.35.17, then commit

Table BANK_ACCOUNT

ACCOUNT_ID BALANCE FEE OP. SYS_START SYS_END
56789 987.12 1.00 U 2017-01-19-14.15.00 9999-12-30-23.59.99....

ACCOUNT_ID BALANCE FEE OP. SYS_START SYS_END
56789 1234.56 1.00 I 2017-01-19-14.00.00 2017-01-19-14.15.00

History table BANK_ACCOUNT_HIST

History table now populated because INSERT and UPDATE were in different TLTs

SET TEMPORAL_LOGICAL_TRANSACTIONS=1;

SET TEMPORAL_LOGICAL_TRANSACTION_TIME = ‘2017-01-19-14.00.00’;

SET TEMPORAL_LOGICAL_TRANSACTION_TIME=‘2017-01-19-14.15.00’;

This action means, “Allow multiple
TLTs in one physical transaction”

“Start” timestamp for base table
row versioning for TLT (can be
CURRENT TIMESTAMP)

“Start” timestamp
for row versioning
for another TLT

© 2018 IBM Corporation11

§New syntax for FOREIGN KEY and associated REFERENCES clauses of ALTER

TABLE and CREATE TABLE:

§What this means: Db2 will ensure no “business-time temporal orphans”

- In other words, child row business time period(s) will always be covered by parent row period(s)

Business-time temporal RI enhancement (V12R1M500)

Parent and child period match

Parent period contains multiple child periods

Multiple parent and one single child period

Gaps in parent and child periods

(column-name
, PERIOD BUSINESS_TIME

)

,

New with Db2 12 for FOREIGN
KEY, REFERENCES clauses

© 2018 IBM Corporation12

§Parent key must have unique index with BUSINESS_TIME WITHOUT OVERLAPS
§Foreign key must have index with BUSINESS_TIME WITH OVERLAPS
§Self-referencing constraints not supported (i.e., parent and child tables must be

different)
§The ON DELETE RESTRICT rule is required
§At this time, no support for temporal UPDATE/DELETE (i.e., UPDATE or DELETE

with FOR PORTION OF BUSINESS_TIME) for parent table when business-time RI
is in effect – even if no child rows exist

More on business-time temporal RI

© 2018 IBM Corporation13

Business-time temporal RI: DDL example

CREATE TABLE CAR_POLICY
(POLICY_ID INTEGER NOT NULL, COVERAGE INTEGER NOT NULL,
BUS_START DATE NOT NULL, BUS_END DATE NOT NULL,
PERIOD BUSINESS_TIME (BUS_START, BUS_END).
PRIMARY KEY (POLICY_ID, BUSINESS_TIME WITHOUT OVERLAPS)) IN...;

CREATE UNIQUE INDEX IX_CAR ON CAR_POLICY (POLICY_ID, BUSINESS_TIME WITHOUT
OVERLAPS);

CREATE TABLE LINE_ITEM (ITEMID INTEGER NOT NULL,
POLICY_ID, BUS_START DATE NOT NULL, BUS_END DATE NOT NULL,
FOREIGN KEY (POLICY_ID, PERIOD BUSINESS_TIME)
REFERENCES CAR_POLICY (POLICY_ID, PERIOD BUSINESS_TIME) ON DELETE RESTRICT,
PERIOD BUSINESS_TIME (BUS_START, BUS_END)) IN ...;

CREATE INDEX IX_LINE ON LINE_ITEM (POLICY_ID, BUSINESS_TIME WITH OVERLAPS);

Parent table and index

Child table and index

New Db2 12
syntax

© 2018 IBM Corporation14

§Transparent archiving introduced with Db2 11
- Enables concentration of newer, more frequently retrieved rows in base table, with “older and

colder” rows stored in associated archive table – programs see single logical table

§Db2 12:
- New ZPARM, MOVE_TO_ARCHIVE_DEFAULT, specifies default value for

MOVE_TO_ARCHIVE global variable

• Retrofitted to Db2 11 via APAR PI56767

- Range-partitioned table can be partitioned on ROW CHANGE TIMESTAMP column

• Enables Db2 transparent archiving to be effectively paired with high-performance storage saver feature of
Db2 Analytics Accelerator

• Retrofitted to Db2 11 via APAR PI63830

- Db2 12 optimizer: significantly better performance for queries involving UNION ALL

• Transparent archiving can transform a query to include a UNION ALL of base table and archive table

• Db2 12 enhanced UNION ALL performance can also be beneficial for queries targeting system-time
temporal tables (Db2 can automatically generate UNION ALL queries for these tables, too)

Db2-managed archiving (aka transparent archiving) – update

© 2018 IBM Corporation15

§What were called “triggers” before Db2 12 are called “basic triggers” in a Db2 12
environment

§Db2 12 introduced “advanced triggers,” which deliver multiple benefits, including:
- Body of advanced trigger can include SQL PL (e.g., logic flow control statements such as IF,

ITERATE, LOOP, and WHILE)
• Enables easier creation of more highly-functional triggers (previously, advanced functionality relied on

trigger calling a stored procedure)
- Provides compatibility with Db2 for Linux/UNIX/Windows
- Multiple versions of a given trigger can be defined and maintained (ADD VERSION and

ACTIVATE VERSION are options for ALTER TRIGGER)
- And, new CREATE TRIGGER capabilities solve a problem that can be encountered when

several triggers have been defined for a table
- Available with function level V12R1M500

SQL PL enhancements – triggers
(SQL Procedure Language)

(more on next slide)

© 2018 IBM Corporation16

§The problem (before advanced triggers):
- If multiple triggers defined on a table have the same activation time (e.g., AFTER) and are

“fired” (i.e., activated) by a given SQL operation, the order of firing depends on the order in
which they were created

- Changing a trigger requires drop/re-create, and that could change firing order unless ALL
relevant triggers are dropped/re-created in desired order

§Advanced triggers – problem solved!
- Now, 3 options for changing existing trigger without affecting firing order:

Changing a trigger while preserving “firing order”

CREATE OR REPLACE TRIGGER trigger-name VERSION version-ID…

ALTER TRIGGER trigger-name REPLACE VERSION version-ID…

ALTER TRIGGER trigger-name ADD VERSION version-ID…
ALTER TRIGGER trigger-name ACTIVATE VERSION version-ID…

New syntax ID of version being changed

ID of version being changedNew syntax

New syntax
New version ID

© 2018 IBM Corporation17

Example of an advanced trigger
CREATE TRIGGER MYTRIG01
BEFORE INSERT ON MYTAB
REFERENCING NEW AS N
FOR EACH ROW
ALLOW DEBUG MODE
QUALIFIER ADMF001
WHEN(N.ending IS NULL OR n.ending > '21:00')
L1: BEGIN ATOMIC

IF (N.ending IS NULL) THEN
SET N.ending = N.starting + 1 HOUR;

END IF;
IF (N.ending > '21:00') THEN

SIGNAL SQLSTATE '80000'
SET MESSAGE_TEXT =

'Class ending time is beyond 9 pm';
END IF;
SET GLOBAL_VAR = NEW.C1;

END L1#

Trigger body contains this logic:

If class end time is null, value is set
to 1 hour after start of class;
otherwise, if class ends after 9pm
then an error is returned

With advanced trigger, SET is not restricted to transition variables
– it can also be used with global variables and SQL variables
(latter refers to variables declared in body of trigger)

SQL PL logic flow
control statements

These are among
new CREATE
TRIGGER options

As with other SQL
PL routines, debug
with Data Studio

© 2018 IBM Corporation18

§Compiled SQL scalar function can issue PREPARE statement:
- Benefit: opens up new functional possibilities for UDFs written in SQL PL

SQL PL enhancements – PREPARE in SQL function

CREATE FUNCTION DYNSQLFUNC()
RETURNS INTEGER
VERSION V1
DETERMINISTIC
NO EXTERNAL ACTION
PARAMETER CCSID UNICODE

BEGIN
DECLARE VARCOUNT INTEGER;
DECLARE LV_STMT_STR VARCHAR(256);
DECLARE S1 STATEMENT;
DECLARE C1 CURSOR FOR S1;
SET LV_STMT_STR = ‘SELECT COUNT(*) FROM

SYSIBM.SYSTABLES’;
PREPARE S1 FROM LV_STMT_STR;
OPEN C1;
FETCH C1 INTO VARCOUNT;
CLOSE C1;
RETURN VARCOUNT;

END!

(available with function level V12R1M500)

© 2018 IBM Corporation19

§ Prior to Db2 12, a variable declared in a SQL PL compound statement could not be declared as a
constant

§ With Db2 12, user-defined constants can be declared in SQL routines and advanced triggers
(available with function level V12R1M500)

§ A few limitations:

- Array-type variables cannot be declared as constants

- SQL variables declared as constants are read-only

- SQLCODE/SQLSTATE cannot be declared as constant SQL variables

SQL PL enhancements: support for constants

…
DECLARE VAR2 INTEGER;
DECLARE cMAXVAL INTEGER CONSTANT 2000;
SELECT 1 INTO VAR2 FROM TEST WHERE VAR1 > cMAXVAL;
IF VAR1 > cMAXVAL THEN

…
ELSE

…
END IF;

© 2018 IBM Corporation20

§Historically, source for SQL PL routines (SQL procedures and UDFs) has been
visible in SYSROUTINES in the catalog
- Problematic for vendors (IBM included) that want to provide functionality in SQL procedures

and/or UDFs while protecting intellectual property
- Also problematic for users when SQL PL source is sensitive information

§Db2 12 provides ability to create and deploy SQL PL routines while “scrambling”
the source in SYSROUTINES
- Enabled via WRAP function, CREATE_WRAPPED stored procedure
- Intellectual property in routine logic cannot be easily extracted
- Applies as well to advanced triggers (source in SYSTRIGGERS)
- Note:

• Individual statements in SQL PL routine may be visible in SYSPACKSTMT
• ALTER PROCEDURE and BIND DEPLOY not available for “wrapped” SQL PL routines (use

DROP/CREATE as alternative to ALTER PROCEDURE)

SQL PL enhancements – source obfuscation
(available with function level V12R1M500)

© 2018 IBM Corporation21

MERGE before Db2 12: useful, but limited

MERGE INTO ACCOUNT AS A
USING (VALUES (:hv_id, :hv_amount)
FOR 3 ROWS)
AS T (ID, AMOUNT)
ON (A.ID = T.ID)
WHEN MATCHED
THEN UPDATE SET BALANCE = A.BALANCE + T.AMOUNT
WHEN NOT MATCHED THEN INSERT (ID, BALANCE)
VALUES (T.ID, T.AMOUNT)
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

Input can only be host variable
arrays or a list of values

Only very simple “matched” and “not
matched” clauses can be specified

• Only one update and
one insert action can
be specified

• Delete is not an
option

Required when there are multiple “rows” of input
values – the rows are processed separately, and
processing continues if errors are encountered

AND, a target table row can be operated on multiple times in the
execution of one MERGE statement – not always a desired behavior

© 2018 IBM Corporation22

Db2 12 enhanced MERGE: new capabilities

MERGE INTO RECORDS AR
USING (SELECT ACTIVITY, DESCRIPTION, DATE, LAST_MODIFIED
FROM ACTIVITIES_GROUPA) AC
ON (AR.ACTIVITY = AC.ACTIVITY) AND AR.GROUP = ’A’
WHEN MATCHED AND AC.DATE IS NULL THEN SIGNAL SQLSTATE ’70001’
SET MESSAGE_TEXT = AC.ACTIVITY CONCAT ’ CANNOT BE MODIFIED. REASON: DATE IS NOT KNOWN’
WHEN MATCHED AND AC.DATE < CURRENT DATE THEN DELETE
WHEN MATCHED AND AR.LAST_MODIFIED < AC.LAST_MODIFIED
THEN UPDATE SET
(DESCRIPTION, DATE, LAST_MODIFIED) = (AC.DESCRIPTION, AC.DATE, DEFAULT)
WHEN NOT MATCHED AND AC.DATE IS NULL THEN SIGNAL SQLSTATE ’70002’
SET MESSAGE_TEXT =
AC.ACTIVITY CONCAT ’ CANNOT BE INSERTED. REASON: DATE IS NOT KNOWN’
WHEN NOT MATCHED AND AC.DATE >= CURRENT DATE THEN
INSERT (GROUP, ACTIVITY, DESCRIPTION, DATE)
VALUES (’A’, AC.ACTIVITY, AC.DESCRIPTION, AC.DATE)
ELSE IGNORE;

New input options: table, view, fullselect

Can have multiple “matched”
and “not matched” clauses with
various additional predicates,
enabling multiple update,
delete, and insert actions

Can use SIGNAL to provide customized
error codes and messages

DELETE is now an option

New IGNORE option: when input row does not meet
any “matched” or “not matched” conditions, ignore it

© 2018 IBM Corporation23

§Available with function level V12R1M500
§New Db2 12 for z/OS MERGE capabilities mirror those provided by Db2 for Linux,

UNIX, and Windows
- Helps people who write SQL PL routines for Db2 for z/OS and LUW

§New Db2 12 MERGE capabilities available when NOT ATOMIC CONTINUE ON
SQLEXCEPTION is NOT specified
- In that case, in addition to new MERGE capabilities being available, there is different behavior:

• A target table row can be operated on (via INSERT/UPDATE/DELETE) once
• If error occurs during execution of MERGE, whole statement is rolled back

- When input is in form of host variable arrays or list of values:
• NOT ATOMIC CONTINUE ON SQLEXCEPTION is required
• MERGE behavior is as it was prior to Db2 12

More on Db2 12 enhanced MERGE

© 2018 IBM Corporation24

§Background:
- Common application requirement: present query result 1 page at a time
- Example: return list of names from a directory, ordered by last name and then first name, in

groups of 20 names, beginning with ERIKSON, MARY

SQL pagination

Page 1

ERIKSON, MARY
ERWIN, PETER
EVANS, ROBERT
FAULK, LINDA
FEDERER, SUSAN
.
.
.
FIGGINS, SAMUEL

Page 2

FINNEY, MARY
FITZGERALD, ARTHUR
FOGLE, STEWART
FOLES, ANNE
FORREST, BRIAN
.
.
.
FRANKS, TERRY

…

© 2018 IBM Corporation25

1. Query predicate to generate result set is kind of convoluted:
- WHERE (LASTNAME = ‘ERIKSON’ AND FIRSTNAME >= ‘MARY’) OR (LASTNAME >
‘ERIKSON’)

2. Getting subsequent pages of rows is not so simple:
- Option: use data-dependent pagination

• Get predicate values from last row in page n of result set and use them to get page n+1, using
convoluted syntax above

• Referring to the example on the preceding slide, that would mean:
•WHERE (LASTNAME = ‘FIGGINS’ AND FIRSTNAME > ‘SAMUEL’) OR (LASTNAME >
‘FIGGINS’)

- Option: use ordinal position within result set as basis for pagination
• Might do that with a scrollable cursor, or a SQL OLAP specification (e.g., ROW_NUMBER), or a SQL

PL routine

- These options are not very user-friendly from programmer’s perspective

Pre-Db2 12: the problem

© 2018 IBM Corporation26

§Simpler predicate syntax for result set generation:

- WHERE (LASTNAME, FIRSTNAME) >= (‘ERIKSON’, ‘MARY’)
- Compare to syntax on preceding slide – simplification benefit increases with number of columns

referenced in predicate (e.g., LASTNAME, FIRSTNAME, MIDDLE_NAME)

§Much simpler, more flexible way to present result set in pages

- First page: OFFSET 0 ROWS FETCH FIRST 20 ROWS ONLY
- Second page: OFFSET 20 ROWS FETCH FIRST 20 ROWS ONLY
- Third page: OFFSET 40 ROWS FETCH FIRST 20 ROWS ONLY

§Variable allowed in OFFSET clause (and FETCH FIRST clause)

- Example: OFFSET ? ROWS FETCH FIRST ? ROWS ONLY…

Db2 12 solution: enhanced SQL pagination

New clause for queries – directs Db2 to skip over specified
number of rows in result set before fetching More new

functionality

(function level V12R1M500)

© 2018 IBM Corporation27

§Pre-Db2 12 problem: a DELETE such as the one below could affect a very large

number of rows in a table

- DELETE FROM T1 WHERE C1 > 7
- Many locks could be acquired (or lock escalation could occur), and huge amount of data could

written to log (backout would take a long time)

§Db2 12 solution: enable “piece-wise” DELETE (i.e., break large DELETE into

smaller parts) via support for FETCH FIRST clause in a DELETE statement

- DELETE FROM T1 WHERE C1 > 7 FETCH FIRST 5000 ROWS ONLY;
- COMMIT;
- DELETE FROM T1 WHERE C1 > 7 FETCH FIRST 5000 ROWS ONLY;
- COMMIT;

- Available with function level V12R1M500

“Piece-wise” DELETE

Delete first chunk of rows

Delete 2nd chunk of rows

© 2018 IBM Corporation28

§Global variables
- Introduced with Db2 11, allow data values to be passed from one SQL statement to another

without the use of application code
§Db2 arrays
- Also introduced with Db2 11 – logically, like a “stack” of values

• Two kinds: ordinary (array elements referenced by ordinal position in array) and associative (array
elements referenced by associated index values)

- With Db2 11, primary use of arrays is in SQL PL routines
• Example: Db2 array can be an input parameter to a native SQL procedure

§Db2 12 (function level V12R1M500) provides several array and global variable
enhancements

Arrays and global variables

© 2018 IBM Corporation

29

§Array-type global variables can be created

- Extend Db2 array use cases beyond SQL PL routines

§ARRAY_AGG function (helpful for populating arrays) can be used with associative

as well as ordinary arrays

- Also, when using ARRAY_AGG to populate arrays with values from several columns of a table,

ORDER BY only has to be specified once (versus once for each array)

§Global variables can have LOB data type (CLOB or BLOB)

§Global variable enhancements for SQL PL routines:

- FETCH values into array global variables (for single-value global variable, FETCH… INTO does

not have to be in a SQL PL routine)

- Reference global variables in USING clause of EXECUTE statement, and in an OPEN

CURSOR statement

Db2 12 array and global variable enhancements

In both cases, global variables provide substitution
values for parameter markers

© 2018 IBM Corporation30

§Db2 11 lets you have a Unicode column in EBCDIC table, but…
- Only for VARCHAR and VARGRAPHIC columns
- Column internally represented as VARBINARY data type – results in several restrictions (on RI,

VALIDPROCs and EDITPROCs, created and declared global temporary tables, indexes, …)

§With Db2 12, you can have a regular byte-based Unicode column in an
EBCDIC table
- Support for a wider variety of data types: VARCHAR, VARGRAPHIC, CHAR, CLOB, GRAPHIC,

DBCLOB
- Real character, graphic and LOB data types – removes most restrictions

“Real” Unicode columns in EBCDIC tables

�

© 2018 IBM Corporation31

Unicode in EBCDIC: Db2 11 to Db2 12
CREATE TABLE T1 (ID INTEGER,

SURNAME VARCHAR(128) CCSID 1208,
FIRSTNAME VARCHAR(128),
BDATE DATE
) CCSID EBCDIC;

ALTER TABLE T1 ADD COLUMN ADDRESS CHAR(50) CCSID 1208;

-ACTIVATE FUNCTION LEVEL (V12R1M500)

ALTER TABLE T1 ALTER COLUMN SURNAME SET DATA TYPE VARCHAR(128);

V12R1M500

Db2 11 SURNAME column represented
internally as VARBINARY

ADDRESS is a regular
byte-based Unicode column

DSNTIJPM reports existing
V11 Unicode columns

Migration of Db2 11
Unicode column

V12

• ALTER can only be executed for V11 Unicode columns
• Same data type and data length
• CCSID clause is inherited from existing column

© 2018 IBM Corporation32

§Referring to ODBC driver used by local, z/OS-based applications
§Enhancement: support for KEEPDYNAMIC(YES)
- Can improve performance for applications that repeatedly execute same dynamic SQL

statement across commits
- In Db2 12 system (function level V12R1M500 or later), when ODBC driver packages are bound

with KEEPDYNAMIC(YES), two ways to preserve prepared statements across COMMITs:
1. Set Db2 ODBC initialization keyword KEEPDYNAMIC to 1
2. Set Db2 ODBC connection attribute SQL_ATTR_KEEP_DYNAMIC to 1

- Result: driver does not re-prepare statement after COMMIT
• With PREPAREs avoided, performance improves

§Another enhancement: Db2 ODBC driver now supports TIMESTAMP WITH TIME
ZONE data type

ODBC driver for z/OS enhancements

© 2018 IBM Corporation33

§New built-in functions
- Aggregate: PERCENTILE_CONT, PERCENTILE_DISC

• Return percentile for set of values treated as points on a continuous distribution or as discrete values
(e.g., “What salary is 90th percentile for department A01?”)

- Scalar: GENERATE_UNIQUE_BINARY, HASH_CRC32, HASH_MD5, HASH_SHA1,
HASH_SHA256
• HASH functions return hashed form of input – choice of 4 hashing algorithms

§Correlation clause now optional for table expressions*

- Same goes for an XML table expression
- With Db2 12, correlation clause for table expression required only if needed to refer to columns

of table expression

New functions, newly optional correlation clause

TABLE
(fullselect)

From Db2 12 SQL Reference, for nested table expression (i.e. SELECT in FROM part of query):

correlation-clause
This was formerly “on the line” in
syntax diagram, meaning, “required”

(function level V12R1M500)

* Retrofitted to Db2 11 via APAR PI55885

© 2018 IBM Corporation34

§ Introduced with function level V12R1M501
§Syntax:

New built-in function: LISTAGG
“LIST,” because it
generates a list of values

“AGG,” because it is
an aggregate function

.-ALL------.
>>-LISTAGG(-+----------+-string-expression-+--------------+-)--->

'-DISTINCT-' '-,--separator-'

>--+--+----><
| .-,---------------------. |
| V .-ASC--. | |
'-WITHIN GROUP--(--ORDER BY----sort-key--+------+--)-+-'

'-DESC-'

Removes duplicate values from list
What you want a list of

Values in list can be
separated by commas, or by
something else you specify

Optional clause – lets you
specify order of values in list

© 2018 IBM Corporation35

§Given this data:

§This statement:

§Yields this result:

LISTAGG in action
EMPNO LASTNAME WORKDEPT

0001 THOMAS A01

0002 ROGERS B01

0003 HONG A01

0004 BARKER B01

0005 KOHL B01

EMPLOYEE table

SELECT WORKDEPT, LISTAGG(LASTNAME, ', ') WITHIN GROUP(ORDER BY LASTNAME)
AS EMPLOYEES
FROM EMPLOYEE
GROUP BY WORKDEPT;

WORKDEPT EMPLOYEES
-------- --------------------
A01 HONG, THOMAS
B01 BARKER, KOHL, ROGERS

Comma-separated list of employees,
by department, in ascending last-name
order within department

© 2018 IBM Corporation36

§Given this data:

§This statement:

§Yields this result:

LISTAGG DISTINCT (to remove duplicate values)
ORDER_NUM CUSTOMER ORDER_DATE
0001 COX INDUSTRIES 2017-06-15

0002 ACME 2017-06-20

0003 COX INDUSTRIES 2017-06-22

0004 BILCO 2017-07-03

0005 ACME 2017-07-09

0006 BILCO 2017-07-18

ORDER table

SELECT MONTH(ORDER_DATE) AS MONTH,
LISTAGG(DISTINCT CUSTOMER, ', ') WITHIN GROUP(ORDER BY CUSTOMER)
AS CUSTOMERS
FROM ORDER
GROUP BY MONTH(ORDER_DATE);

MONTH CUSTOMERS

6 ACME, COX INDUSTRIES
7 ACME, BILCO

Comma-separated list of customers
that placed orders with us, in ascending
customer-name order within month of
order placement

© 2018 IBM Corporation37

Db2’s native REST interface

§ Introduced with Db2 12, retrofitted to Db2 11 via APARs PI66828, PI70477
§An extension of Db2 distributed data facility (DDF) functionality
- Leverages DDF capabilities including thread pooling, classification, accounting/statistics tracing
- Leverages existing Db2 package management capabilities
- SQL statements executed via REST calls run under preemptible SRBs in the DDF address space

• SQL executing under DDF preemptible SRBs is up to 60% zIIP-eligible

- A single static SQL statement can be exposed for execution via a REST call
• Could be a single data manipulation SQL statement (SELECT, INSERT, UPDATE, DELETE)
• Could be a call to a Db2 stored procedure (in that case, use native SQL procedure if possible, to get zIIP

offload – thanks to running under preemptible SRB in Db2 DDF address space)

§Designed for high performance
- IBM tests: 540 million transactions per hour through the Db2 for z/OS REST API

© 2018 IBM Corporation38

Db2 RESTful services in action

POST http://mybank.com:4711/services/ACCOUNTS/getBalance
Body: { “ID”: 123456789 }

REST client

DDF DB2
HTTP and
JSON parsing

SQL
execution

SELECT BALANCE
FROM BANK.ACCOUNTS
WHERE ID=123456789

Body: { “BALANCE”: 1982.42 }

HTTP + JSON
Security checks

Thread
management

HTTP request

HTTP response

Discover

Manage

Invoke

SQL statement

© 2018 IBM Corporation

Thanks for your time.
Robert Catterall, IBM
rfcatter@us.ibm.com

