
Session code:

The Db2 Parallel Universe

John Hornibrook

IBM Canada
C19

05/dd/2018, HH:MM-HH:MM Db2

Agenda

• Query parallelism overview and concepts

• Row-organized query parallelism

• Column-organized query parallelism

• Query parallelism and the database partitioning feature (DPF)

• How the optimizer choose parallelization strategies

• Configuration

• Monitoring

2

Query Parallelism
SELECT..FROM..

WHERE

SELECT..FROM..

WHERE

SELECT..FROM..

WHERE

SELECT..FROM..

WHERE

SELECT..FROM..

WHERE

SELECT..FROM..

WHERE

SELECT..FROM..

WHERE

SELECT..FROM..

WHERE

3

Query Parallelism

• Using multiple database subagents to execute a single SQL statement

• All modern systems have multiple cores (even your phone!)

• Increases in processor speed started to slow about 10 years ago
• Limited by power consumption, heat dissipation and current leakage

• Where are the 10GHz chips?

• So systems have more processors

• Modern SW must use parallelism to achieve performance

improvements

4

CPUs aren’t getting any faster…

CPU scaling showing transistor

density, power consumption, and

efficiency. Chart originally from The

Free Lunch Is Over: A Fundamental

Turn Toward Concurrency in

Software

5

2 Types of Query Parallelism in Db2 (1/2)

• Db2 parallelizes execution of a single SQL statement using 2

approaches:

• Inter-partition parallelism
• Occurs naturally with database (DB) partitioned tables

• Db2 Database Partitioning Feature (DPF)

• Statement must be executed on each of the table’s DB partitions

• Parallelism efficiency depends on:
• Table’s partitioning key

• Other table’s partitioning key (for joins)

• Relational operations (joins, aggregation distinct, union, etc.)

6

2 Types of Query Parallelism in Db2 (2/2)

• Db2 parallelizes execution of a single SQL statement using 2

approaches:
• Inter-partition parallelism

• Intra-partition parallelism
• Does not require tables to be partitioned (range or DB)

• Can be used in combination with inter-partition parallelism

• Used for both row and column-organized tables

• Also known as ‘multi-core parallelism’

• Both approaches can be used together

7

Query Parallelization Techniques

• The query is sub-divided so that different pieces execute in parallel or

are executed by multiple sub-agents
• These ‘pieces’ are called subsections

8

Query Subdivision

HSJOIN

ProductDaily Sales

SCANSCAN

SORT

GROUPBY

This query can be subdivided

into 3 subsections:

1. Scan PRODUCT table and

create hash table

2. Scan DAILY_SALES table and

perform a hash join using

the hash table from step 1.

3. Sort the result of the hash

join and compute the SUM

for each CATEGORY group.

Subsection 1 must complete

before subsection 2 and 3.

Subsection 2 and 3 can execute

in parallel.

SELECT SUM(S.QUANTITY_SOLD), P.CATEGORY

FROM

DAILY_SALES S,PRODUCT P

WHERE

S.PRODKEY=P.PRODKEY

GROUP BY P.CATEGORY

9

Query Parallelization Techniques

• The data is sub-divided so that the same subsection can execute in

parallel, on different pieces of the data
• These ‘pieces’ of data are called partitions

• Db2 partitions the data in a few ways:

• Random

• Hash

• Range

• The data could also be replicated
• Each subsection sees all the data

• Will explain why this is useful later…

10

Data Subdivision

1

1

2

3

3

4

5

6

7

8

8

10

Data
1

3

8

1

4

8

2

5

6

3

7

10

Random

1

1

8

8

3

3

7

2

5

6

4

10

Hash

1

1

2

3

3

4

5

6

7

8

8

10

Range

11

Intra-Partition Query Parallelism Architecture

• Db2 doesn’t require tables to be pre-partitioned

• The data is dynamically partitioned when it is read from the table using a

‘straw scan’
• Db2 determines optimal ‘gulp size’

• Assigns gulps to subagents
• Range of rows or pages

• Multiple gulps for large tables to ensure load balance

• Assign new range when range is consumed

• Gulp size is adjusted dynamically to maintain load balance

• Provides dynamic load balancing

• Supports table and index scans

• Used for row and column-organized tables

12

Dynamic Data Partitioning – “straw scans”

Pages 2-3

Pages 0-1

Pages 4-5

Pages 6-7

Pages 8-9

etc...

Subagent 1

Subagent 2

Subagent 3

Subagent 4

Subagent 3

Subagent 2

Degree=4 Gulp size =

2 pages

13

Dynamic Data Partitioning – “straw scans”

• Allows each subagent to get more work as needed

• Some subagents might get more “gulps” then others, but some gulps

are easier to swallow

• The important thing is that all subagents (and cores) are busy and that

each one does the same amount of work (load balance)

14

Row-organized Intra-Partition Parallelism Architecture

• Parallelize Query Execution
• Query is processed in parallel by multiple subagents

• Result set is returned to the co-ordinator agent

• Via a “table queue”

• A special Db2 pipe, with multiple writers (subagents) and 1 reader (co-

ordinator agent)

• There are many types of table queues (more later…)

• Single co-ordinator agent services application requests

15

Row-organized Intra-Partition Parallelism Example (1/4)

LTQ
(8)
|

MSJOIN
(7)

/----+----\
TBSCAN TBSCAN

(3) (6)
| |

SORT SORT
(2) (5)
| |

TBSCAN TBSCAN
(1) (4)
| |

PRODUCT PRODATR

Subagent 1 Subagent 2 Subagent 3 Subagent 4

RETURN

(9)

|

LTQ

(8)

Co-ordinator
•Every access plan contains

only 2 subsections and 1 local

table queue

•Runtime operators

coordinated using latches,

semaphores, shared memory

controls blocks

LTQ
(8)
|

MSJOIN
(7)

/----+----\
TBSCAN TBSCAN

(3) (6)
| |

SORT SORT
(2) (5)
| |

TBSCAN TBSCAN
(1) (4)
| |

PRODUCT PRODATR

LTQ
(8)
|

MSJOIN
(7)

/----+----\
TBSCAN TBSCAN

(3) (6)
| |

SORT SORT
(2) (5)
| |

TBSCAN TBSCAN
(1) (4)
| |

PRODUCT PRODATR

LTQ
(8)
|

MSJOIN
(7)

/----+----\
TBSCAN TBSCAN

(3) (6)
| |

SORT SORT
(2) (5)
| |

TBSCAN TBSCAN
(1) (4)
| |

PRODUCT PRODATR
16

select p.name, p.prod_id, pa.attribute

from product p, prodatr pa

where p.prod_id = pa.prod_id;

Parallel table scans ("straw" scans)

Hash partitioned SORTs on prod_id

one partition per agent

Each agent scans a sort partition

Join processed in parallel by each agent
by joining corresponding partitions

Results returned via shared memory table
queue to co-ordinator agent

LTQ
(8)

|
MSJOIN

(7)
/----+----\

TBSCAN TBSCAN
(3) (6)
| |

SORT SORT
(2) (5)

| |
TBSCAN TBSCAN

(1) (4)
| |

PRODUCT PRODATR

Row-organized Intra-Partition Parallelism Example (2/4)

17

Row-organized Intra-Partition Parallelism Example (3/4)
• Hash partitioned sort

LTQ
(8)
|

MSJOIN
(7)

/----+----\
TBSCAN TBSCAN

(3) (6)
| |

SORT SORT
(2) (5)
| |

TBSCAN TBSCAN
(1) (4)
| |

PRODUCT PRODATR

PROD_ID
1
5
9
13
17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PROD_ID
2
6
10
14
18

SORT(2)

Partition 1

PROD_ID
3
7
11
15
19

PROD_ID
4
8
12
16
20

Partition 2 Partition 3 Partition 4

PRODUCT.PROD_ID

(straw scan)

Hash

TBSCAN(1)

TBSCAN(3)

Subagent 1 Subagent 1 Subagent 1 Subagent 1

Row-organized Intra-Partition Parallelism Example (4/4)
• Each sub-agent joins their

corresponding sort partition

PROD_ID
1
5
9
13
17

Partition 1

Subagent 1

LTQ
(8)
|

MSJOIN
(7)

/----+----\
TBSCAN TBSCAN

(3) (6)
| |

SORT SORT
(2) (5)
| |

TBSCAN TBSCAN
(1) (4)
| |

PRODUCT PRODATR
PRODUCT.PROD_ID

PROD_ID
1
5
13
17

Partition 1

Subagent 1

PRODATR.PROD_ID

MSJOIN(7)

Row-organized Intra-Partition Query Parallelism
Architecture

• Parallelization techniques
• Scans dynamically partition data

• ‘Straw’ partitioning (not hashed)

• Sorts can be private, shared or partitioned

• Temps can be private or shared

• Temps are used to replicate streams

20

Row-organized Intra-Partition Query Parallelism
Parallel Sorts (1/2)

• Private
• Each subagent sorts and processes its own stream

• Data is randomly partitioned

• Partitioned
• Stream is hash-partitioned – provides ‘value’ partitioning

• Most important for aggregation and distinct

• Shared
• Each subagent inserts into the same sort, but the sort is read using a straw scan

• Stream has random partitioning

• Used for rebalancing a low cardinality stream

• Higher contention on the single sort, but there are only a few rows
21

Row-organized Intra-Partition Query Parallelism
Parallel Sorts (2/2)

• Round-robin
• Multiple sort partitions are created

• Subagents insert into each partition in round-robin fashion

• Subagents assigned a single partition to read

• Stream has random partitioning

• Used to rebalance a high cardinality stream

• Less contention => better parallelism

• Replicated
• Each subagent inserts into the same sort

• Each subagent reads the entire sort

22

Row-organized Intra-Partition Query Parallelism

• Parallelization techniques
• Joins

• Hash join dynamically partitions data
• Build and probe phases are each parallelized

• Merge sort join relies on hash partitioned or replicated sorts

• Nested loop join
• Complex inners processed in parallel

• Simple inners processed independently (privately)

• Outer can be replicated or partitioned

• Aggregation, distincting
• Partial, final modes supported

23

Row-organized Intra-Partition Query Parallelism

6.77122e+06

NLJOIN

(6)

713706

63

/---------+----------\

292.2 23173.3

REBAL FETCH

(7) (9)

325.265 2456.85

11 2

| /---+----\

292.2 23173.3 6.77122e+07

TBSCAN IXSCAN TABLE: DB2USER

(8) (10) DAILY_SALES

325.265 1605.23 Q1

11 1

| |

2922 6.77122e+07

TABLE: DB2USER INDEX: SYSIBM

PERIOD SQL091218161022180

Q2 Q1

•Load imbalance results in poor scalability

•REBAL operator redistributes rows to ensure all subagents

do equal work

•Optimizer performs load balance analysis to determine

REBAL placement

Without REBAL

With REBAL

degree

degree

Row-organized Intra-Partition Query Parallelism

• INSERT, UPDATE and DELETE operations are not executed in parallel

• A sub-select feeding an INSERT is parallelized, but not the INSERT

• SELECT over INSERT/UPDATE/DELETE is not parallelized

25

Query Parallelism and the Explain Facility

• Some operators are only used to support query parallelism
• Table queues (TQ)

• Rebalance operator (REBAL)

• Other operators can execute in serial or parallel
• Extra explain arguments indicate the parallelization technique

• SORT
• SORTTYPE (GLOBAL, PARTITIONED, ROUND ROBIN, REPLICATED, SHARED)

• PARTCOLS

• Partitioning columns when SORTTYPE=PARTITIONED

26

Query Parallelism and the Explain Facility

• TBSCAN, IXSCAN (row-organized processing only)
• Optimizer determines these options for row-organized parallelism

• Determined at runtime for column-organized parallelism

• SCANGRAN (n): (Intra-Partition Parallelism Scan Granularity)

• SCANTYPE: (Intra-Partition Parallelism Scan Type)

• LOCAL PARALLEL

• SCANUNIT: (Intra-Partition Parallelism Scan Unit)

• PAGE | ROW

• TQ
• TQ TYPE : (Table queue type)

• LOCAL

• TQDEGREE (n): (Degree of Intra-Partition parallelism)
27

Query Parallelism and the Explain Facility

• TEMP (row-organized processing only)
• SHARED (Temporary table is shared among subagents)

• TRUE

• SNGLPROD (Intra-partition parallelism SORT or TEMP produced by a single agent)

• TRUE | FALSE

28

Column-organized Intra-Partition Query Parallelism

• Uses similar parallelization techniques as row-organized parallelism
• Dynamic straw scans of column data

• Straw size determined at runtime

• Uses mostly hash or random partitioning

• Limited use of range partitioning for certain types of OLAP functions

• There can be multiple column-organized subsections
• Every individual table access is in a separate subsection

• Subsections pass data through special runtime table queues

• These aren’t shown in explain because they are determined at runtime, not by

the optimizer

29

Column-organized Intra-Partition Query Parallelism

•Column-organized operators execute in different subsections than row-organized operators

•Column-organized subsections are processed by different sets of subagents

•Data is transferred between row and column-organized subsections using a column-

organized table queue (CTQ)
•CTQ also performs row materialization

Row processing

(Subsection 1)

Column

processing

(subsection 2)

•Subsections run concurrently

•There can be multiple column or

row processing subsections

•All subsections can be processed by

multiple subagents

HSJOIN

SCAN SCAN

GROUP BY

RETURN

CTQ

30

Column

processing

(subsection 3)

Column-organized Intra-Partition Query Parallelism
• BLU SORT uses PARADIS, a highly parallel in-place radix sort from IBM Watson

• BLU SORT can use range partitioning to improve parallelism and leverage ordered stream for multiple

operations RETURN

(1)

|

LTQ

(2)

|

CTQ

(3)

|

TBSCAN

(4)

|

SORT

(5)

|

TBSCAN

(6)

|

CO-TABLE:
TC1

Select c1,

c2,

c3,

max(c1) over (partition by c2),

max(c1) over (partition by c2, c3)

from tc1
PARTCOLS: (Table partitioning columns)

1: Q2.C2

SORTKEY : (Sort Key column)

1: Q2.C2(R)

2: Q2.C3(A)

SORTTYPE: (Intra-Partition parallelism sort type)

PARTITIONED

• Each sort output stream contains a range of values for C2

• The data is ordered on C3 within each distinct value of C2

• The data is not ordered on C2 within each stream

• C2 does not need to be ordered – just partitioned

• Indicated by “R” (random order)

• This allows each MAX to be computed in parallel

31

Column-organized Intra-Partition Parallelism

• Parallel INSERT is supported into BLU permanent and temporary tables (DGTTs)
• Source can be a row or column-organized table

• Applies to NOT LOGGED BLU DGTTs too

• Only used if a ‘large’ number of rows are being inserted
• ~ 50K rows

• Each subagent puts data into a separate set of pages

• Parallelizing small inserts could result in a large amount of wasted space

• Ensure statistics are accurate so the optimizer can make the correct decision

• Enabled by default for BLU DGTTs in Db2 11.1

• Enabled by default for BLU permanent tables in Db2 11.1.2.2

• Some restrictions apply
• See link to web page in speaker notes

32

Parallel Insert into NOT LOGGED BLU DGTT

• Multiple DB agents can insert into a column-organized DGTT
• Source must be a single table (regular or DGTT)

• Source and target could be on a different number of DB partitions (MPP system)

• Must be enough rows to make it worthwhile

• about 50000 rows

33

INSERT INTO SESSION.CUST_TEMP SELECT * FROM DB2USER.CUSTOMER;

SCAN

INSERT

SCAN

INSERT

CUSTOMER

SCAN

INSERT

CUST_TEMP

SCAN

INSERT DEGREE=4

Inter-Partition Query Parallelism
• Shared nothing architectural model

• Partitioned database

• Database is divided into multiple partitions

• Database partitions can run on one or multiple machines

• Each database partition has dedicated resources (engine, log manager, lock manager, bufferpool,

etc.)

• Parallel processing occurs on all partitions concurrently and is coordinated by the DBMS

• Single system image to user and application
Fast Communication Manager

Data Log

Database
Partition

data log data log data log data log

Db2 Db2 Db2 Db2

34

Inter-Partition Query Parallelism
• Tables are distributed across multiple DB partitions (hash or randomly partitioned)

• Queries are divided into subsections and executed across the DB partitions

• Query performance depends on how tables are partitioned and the relational operations

• Subsections are determined by table queue position

35

Table Queues (TQs)

• Table Queue represents

communication between database

partitions or subagents

• Subsection boundaries in DPF

• There are 5 types of TQs:
• Merging TQ (MDTQ, MBTQ, LMTQ)

• Broadcast TQ (BTQ, MBTQ)

• Directed TQ (DTQ, MDTQ)

• Local TQ (LTQ, LMTQ)

• Intra-partition parallelism

• Column-organized (CTQ, RCTQ)

• Column->row or row->column

3) TQ : (Table Queue)

Arguments:

LISTENER: (Listener Table Queue type)

FALSE

SORTKEY : (Sort Key column)

1: L_RETURNFLAG(A)

SORTKEY : (Sort Key column)

2: L_LINESTATUS(A)

TQMERGE : (Merging Table Queue flag)

TRUE

TQREAD : (Table Queue Read type)

READ AHEAD

TQSEND : (Table Queue Write type)

DIRECTED

UNIQUE : (Uniqueness required flag)

FALSE

36

Collocated join

Partitioning keys:

CUSTOMER: CUSTKEY

DAILY_SALES: CUSTKEY

Join predicate:

CUSTOMER.CUSTKEY = DAILY_SALES.CUSTKEY

JOIN

Customer Daily Sales

SCAN SCAN

Directed join

Partitioning keys:

CUSTOMER: CUST_NUMBER

DAILY_SALES: CUSTKEY

Join predicate:

CUSTOMER.CUSTKEY = DAILY_SALES.CUSTKEY

Equi-join predicate on each table’s partitioning key

Tables must be in same DB partition group

Join column(s) data type must be partition compatible

No table queues (TQs) necessary

JOIN

Customer

Daily Sales
SCAN

SCAN
DTQ

Equi-join predicate on one table’s partitioning key

Direct rows of one table to partitioning of the other

37

Inter-Partition Parallelism Join Strategies

Broadcast join

Partitioning keys:

STORE: STOREKEY

DAILY_SALES: CUSTKEY

Join predicate:

STORE.STOREKEY = DAILY_SALES.STOREKEY

•No equi-join predicate on both table’s

partitioning key or no equi-join predicate.

•One table is much smaller than the other.

•Broadcast (replicate) smaller table to partitions
of the larger table.

JOIN

Store

Daily Sales
SCAN

SCAN
BTQ

38

Inter-Partition Parallelism Join Strategies

Inter + Intra Partition Parallelism
• Intra-partition parallelism can be enabled in a DPF

system

• This allows each DPF subsection to be parallelized

• But… intra-parallel might add too much parallelism

depending on the ratio of cores to DB partitions

• There might already be enough DPF subsections to

drive parallelism

• BLU DPF systems should have more cores per DB

partition, because BLU relies on intra-partition

parallelism

• 1 socket per DB partition

• Typically 8-16 cores per DB partition

• Row-organized DPF systems could have 2-4 cores per

DB partition

39

40

• BLU Table queues (TQ)
• M = merging

• D = directed

• B = broadcast

• Flows encoded data

• A TQ delimits a DPF subsection
• Each DPF subsection can use multiple

subagents via intra-partition parallelism

• Indicated by TQDEGREE explain argument

• Recall that each DPF subsection could
have multiple BLU subsections

RETURN

(1)

|

CTQ

(2)

|

MDTQ

(3)

|

TBSCAN

(4)

|

SORT

(5)

|

GRPBY

(6)

|

DTQ

(7)

|

GRPBY

(8)

|

^HSJOIN

(9)

/-------+--------\

^HSJOIN TBSCAN

(10) (14)

/----+----\ |

TBSCAN BTQ CO-TABLE: DB2USER

(11) (12) ITEM

| |

CO-TABLE: DB2USER TBSCAN

WEB_SALES (13)

|

CO-TABLE: DB2USER

DATE_DIM

Subsection 1

Subsection 2

Subsection 3

Subsection 4

BLU Inter + Intra-Partition Parallelism

Inter-Partition Parallel Aggregation
|

17909.4

MDTQ

(4)

17773

4639.2

|

17909.4

GRPBY

(5)

17748.9

4639.2

|

17909.4

TBSCAN

(6)

17743.7

4639.2

|

17909.4

SORT

(7)

17738.5

4639.2

Rows

RETURN

(1)

Cost

I/O

|

18136

DTQ

(2)

17791.7

4639.2

|

4534

GRPBY

(3)

17778.2

4639.2

|

SELECT ITEM_DESC, SUM(PERCENT_DISCOUNT),
SUM(EXTENDED_PRICE)

FROM PERIOD, DAILY_SALES, PRODUCT, STORE
WHERE PERIOD.PERKEY=DAILY_SALES.PERKEY AND

PRODUCT.PRODKEY=DAILY_SALES.PRODKEY AND
STORE.STOREKEY=DAILY_SALES.STOREKEY AND
CALENDAR_DATE BETWEEN
'01/01/2005' AND '04/28/2005' AND
STORE_NUMBER='03' AND
CATEGORY=72

GROUP BY ITEM_DESC ;

AGGMODE : (Aggregration Mode)

PARTIAL

SORTKEY : (Sort Key column)

1: Q6.ITEM_DESC(A)

Sort aggregation

AGGMODE : (Aggregration Mode)

INTERMEDIATE

GROUPBYR: (Group By requirement)

1: Q6.ITEM_DESC

Local partial aggregation

PARTCOLS: (Table partitioning
columns)

1: Q6.ITEM_DESC

SORTKEY : (Sort Key column)

1: Q6.ITEM_DESC(A)

Repartition stream

AGGMODE : (Aggregration Mode)

FINAL

GROUPBYR: (Group By requirement)

1: Q6.ITEM_DESC(A)

Final aggregation

Row-organized processing

example

41

Inter-Partition Parallelism

• INSERT, UPDATE and DELETE are automatically parallelized for DB-

partitioned tables

42

Intra-Partition Query Parallelism Configuration

• There are 2 types of controls:
• Toggling intra-partition parallelism support

• Db2 requires extra infrastructure to support query parallelism
• Controlling access to shared data structures

• Co-ordination of multiple subagent threads

• This infrastructure adds 10-15% overhead to OLTP applications

• Controlling the degree of parallelism

• The number of subagents used to execute a query

• Query parallelism is bad for OLTP SQL statements

• Query parallelism is good for reporting queries on OLTP applications

43

Toggling Intra-partition Parallelism Support

• Instance level switch
• INTRA_PARALLEL database manager configuration parameter

• Application level switch
• SYSPROC.ADMIN_SET_INTRA_PARALLEL(YES | NO) stored procedure

• Takes effect in the next transaction

• Overrides the instance level switch

• Workload level switch
• MAXIMUM DEGREE workload manager option

• Value of 1 disables intra-partition parallelism

• Value > 1 enables intra-partition parallelism and sets a cap on the degree

• Overrides the instance and application level switches

44

Toggling Intra-Partition Query Parallelism
• WLM workload control:

• An OLTP workload that doesn’t use parallelism
• =1 � INTRA_PARALLEL=NO

CREATE WORKLOAD banking_wl APPLNAME (‘banking’) MAXIMUM DEGREE 1;

• A complex query workload using parallelism
• >1 � INTRA_PARALLEL=YES

• Also specifies the degree upper limit

• The application specifies the requested degree using existing external controls

CREATE WORKLOAD report_wl APPLNAME (‘cognos’) MAXIMUM DEGREE 8;

ALTER WORKLOAD report_wl MAXIMUM DEGREE 4;

• Application control:

CALL SYSPROC.ADMIN_SET_INTRA_PARALLEL(‘YES’)

• Toggles intra-partition parallelism at transaction boundaries
• Must not have open cursors across transaction boundaries e.g. WITH HOLD cursors

Controlling the Degree of Parallelism

• There are 2 types of controls:
• (1) Tell the optimizer what degree to use

• CURRENT DEGREE special register (dynamic SQL)

• DEGREE bind option (static SQL)

• dft_degree database configuration parameter
• Provides the default for special register or bind option

• The degree can be a specific value
• SET CURRENT DEGREE ‘16’

• The query will use 16 subagents

• The degree can be ‘ANY’
• SET CURRENT DEGREE ‘ANY’

• The optimizer will determine the degree

• Runtime might choose to further reduce the degree based on system load

46

Controlling the Degree of Parallelism

• (2) Specify a degree limit at runtime

• MAX_QUERYDEGREE database manager configuration parameter
• Instance level limit on the degree for any statement

• Dynamic

• The optimizer does NOT consider this parameter

• ‘ANY’ or -1 means there is no limit

• SET RUNTIME DEGREE command
• Allows specifying the maximum degree for a particular application using the

application handle

• SET RUNTIME DEGREE FOR (41408, 55458) TO 4

• SET RUNTIME DEGREE FOR ALL TO 2

47

Controlling Intra-Partition Query Parallelism

• Intra-partition query parallelism requires shared sort heap

• Shared sort heap is always allocated when INTRA_PARALLEL DBM

config parm = ON
• SHEAPTHRES_SHR is automatic

• Shared sort heap is not allocated when INTRA_PARALLEL=OFF and

SHEAPTHRES > 0
• Must set SHEAPTHRES=0 in order to enable INTRA_PARALLEL at application or

workload level

• If no shared sort heap available:
• CALL SYSPROC.ADMIN_SET_INTRA_PARALLEL(‘YES’) will fail with SQL5192W

• WLM MAXIMUM DEGREE > 1 setting will have no effect

Intra-Partition Query Parallelism Configuration

• Common Scenario: mixed workload support

• Parallelize report queries in an OLTP system

• Avoid parallel ‘infrastructure’ overhead on OLTP queries

• There is a 10-15% impact just by setting INTRA_PARALLEL=ON

• In ESE only. DPF unconditionally enables parallel infrastructure

• Disable query parallelism at instance level
• update dbm cfg using intra_parallel off

• Enable parallelism for connections executing reporting queries
• SET CURRENT DEGREE ‘ANY’

• Use Workload Manager (WLM) to toggle INTRA_PARALLEL and maximum DEGREE for a workload OR

• Reporting connections issue “CALL ADMIN_SET_INTRA_PARALLEL(YES)”

Controlling the Degree of Parallelism

• The degree of parallelism is not limited by the number of

cores/processors
• It is completely independent, other than for degree = ‘ANY’

• Degree can exceed the number of cores
• Query parallelism can be used on a single-processor machine

• Sometimes over parallelization can improve performance if system is

I/O bound.

50

51

Intra-Partition Parallelism External Controls Summary

Parameter Value Default Scope DB2 10 Comment

INTRA_PARALLEL NO,YES NO Instance N DBM configuration

ADMIN_SET_INTRA_P
ARALLEL

NO,YES NO Application Y Stored procedure. Switch
INTRA_PARALLEL for a connection.

MAXIMUM DEGREE 1-32,767 DEFAULT Workload Y WLM workload option. Controls both
INTRA_PARALLEL and maximum
runtime degree

MAX_QUERYDEGREE ANY,

1-32,767

ANY Instance N DBM configuration. Maximum runtime
degree.

SET RUNTIME
DEGREE

1-32,767 N/A Application N CLP command. Maximum runtime degree
for specific applications.

DFT_DEGREE ANY,

1-32,767

1 Database N DB configuration.

Default value for CURRENT DEGREE
special register or package bind
DEGREE option

CURRENT DEGREE ANY,

1-32,767

DFT_DEGREE Application N Special register. The degree of parallelism
considered by the SQL compiler for
dynamic SQL.

Bind DEGREE ANY,

1-32,767

DFT_DEGREE Package N DB2 bind option. The degree of parallelism
considered by the SQL compiler for
static SQL.

Switch

Switch + maximum

Runtime maximum

Compile time value

Monitoring Intra-Partition Query Parallelism

• Determine exactly what degree a statement used

• intra_parallel_state: YES/NO

• effective_query_degree: degree chosen by optimizer

• query_actual_degree: degree chosen at runtime if degree=‘ANY’

SELECT

ac.application_handle, package_name, intra_parallel_state,

effective_query_degree, query_actual_degree, stmt_text

FROM

TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (null, -1)) ac,

TABLE(MON_GET_ACTIVITY_DETAILS(ac.application_handle, ac.uow_id,

ac.activity_id, -1)) ad,

XMLTABLE (XMLNAMESPACES(DEFAULT 'http://www.ibm.com/xmlns/prod/db2/mon'),

'$actmetrics/db2_activity_details'

PASSING XMLPARSE(DOCUMENT AD.DETAILS) AS "actmetrics"

COLUMNS

"PACKAGE_NAME" VARCHAR(128) PATH 'package_name',

"INTRA_PARALLEL_STATE" CHAR(3) PATH 'intra_parallel_state',

"EFFECTIVE_QUERY_DEGREE" BIGINT PATH 'effective_query_degree',

"QUERY_ACTUAL_DEGREE" BIGINT PATH 'query_actual_degree',

"STMT_TEXT" VARCHAR(1024) PATH 'stmt_text') am;

Session code:

Please fill out your session

evaluation before leaving!

John Hornibrook

IBM Canada

jhornibr@ca.ibm.com

C19

