
I M P R O V I N G   E T L  
P E R F O R M A N C E

Calisto Zuzarte

IBM

Tridex : 02 Dec 2021 9:30 am



Agenda

• General ETL Considerations
• Data Distribution, Statistics, Compression

• DML Considerations
• LOAD/INSERT, DELETE, UPDATE, MERGE 

• Performance Objects
• Indexes, Replicated Tables, Materialized Query Tables



General ETL Considerations
Data Distribution, Statistics, Compression



Data Distribution



Data Distribution (1/2)

• CREATE TABLE … DISTRIBUTE BY <column(s)> …
• User Specifies the distribution key

• CREATE TABLE … DISTRIBUTE BY RANDOM …
• Distribution key is based on a hidden column automatically populated by a 

unique value generator

• CREATE TABLE …  <no distribute by clause>
• Db2 chooses a distribution key

• If no Primary Key or unique constraint exists, three columns will be selected



Data Distribution (2/2)

• Very Large Tables (Fact Tables)
• Collocate with the largest commonly joined (dimension) table

• If all dimensions are small choose one or more common GROUP BY columns

• Medium to Large Tables
• If Primary Key present, choose the Primary Key

• If no Primary Key, choose the common join column to the largest table

• Small Tables
• RANDOM distribution 



Statistics



Statistics

ROW ORIENTED TABLES

• Auto-RUNSTATS OFF by default

• Real Time Statistics is available

• Indexes are more commonly 
defined and have additional 
statistics

COLUMN ORIENTED TABLES

• Auto-RUNSTATS is ON in 
Warehouses configured for 
column tables

• Real Time Statistics (Db2 11.5.6)

• Indexes not commonly defined 
hence  need Auto-Column Group 
Statistics 



Statistics Collection During ETL (1/4)

• Automatic RUNSTATS kicks in every 2 hours 
• It may be to late if it is a temporary table used during ETL

• The Real Time Statistics feature  added for Column-oriented tables

• Configuring Automatic RUNSTATS / Real Time Statistics: 

Automatic table maintenance          (AUTO_TBL_MAINT) = ON

Automatic runstats (AUTO_RUNSTATS) = ON

Real-time statistics            (AUTO_STMT_STATS) = ON

Statistical views              (AUTO_STATS_VIEWS) = ON

Automatic sampling                (AUTO_SAMPLING) = ON

Automatic column group statistics (AUTO_CG_STATS) = ON



Statistics Collection During ETL (2/4)

• Best practice for temporary ETL tables
• If not using RTS, Collect RUNSTATS immediately AFTER the new data is 

loaded.

• For large temporary tables, Use a low sampling rate for speed 

• SYSTEM (page) sampling is faster than BERNOULLI (row) sampling 

• Example RUNSTATS statement

CALL SYSPROC.ADMIN_CMD (‘RUNSTATS ON TABLE <schema.tablename> 

WITH DISTRIBUTION ON ALL COLUMNS

AND INDEXES ALL TABLESAMPLE SYSTEM(10)’);



Statistics Collection During ETL (3/4)

• Best Practice For RUNSTATS sampling
• For tables that will be used during ETL or subsequent queries an 

appropriate sample size as recommended below may be used 

CALL SYSPROC.ADMIN_CMD (‘RUNSTATS ON TABLE 

<schema.tablename> 

WITH DISTRIBUTION ON ALL COLUMNS AND INDEXES ALL 

TABLESAMPLE SYSTEM(N)’);

Very roughly, for up to 10 Million rows, use N = 25

Between 10 Million and 100 Million rows, use N = 20 

Between 100 Million and 1 Billion rows,  use N = 10 

More than 1 Billion rows,                use N = 5 



Statistics Collection During ETL (4/4)

• Best Practice For RUNSTATS Column Group Statistics (CGS)
• The Auto-CGS setting is recommended

• CGS are advanced statistics not collected by default 

• Exploited for multiple local predicates / multiple join predicates

CALL SYSPROC.ADMIN_CMD (‘RUNSTATS ON TABLE SCHEMA.T1 

ON ALL COLUMNS AND COLUMNS ((C1, C3), (C4, C7))

WITH DISTRIBUTION AND INDEXES ALL TABLESAMPLE SYSTEM(20) 

SET PROFILE’);



COMPRESSION



Compression (1/3)

ROW ORIENTED TABLES

• Compression OFF by default 

• Not recommended when CPU 
bound

• Data uncompressed when read

• Dictionary per table/range 
partition

• Additional Page Compression

• Partial column or multi-column 
compression

COLUMN ORIENTED TABLES

• Always compressed

• Operations exploit compressed 
data

• Dictionary per column

• Additional Page compression

• Order preserving frequency-based 

• Compressed Row Indexes used.



Compression (2/3)

• Order Preserving 
Frequency Based 
Compression

• Dictionary Compression

• Page Compression



Compression (3/3) 

• Best Practices for good compression in column-oriented tables

• https://www.ibm.com/support/producthub/db2/docs/content/SSEPGG_11.
5.0/com.ibm.db2.luw.common.doc/doc/c_bp_compress_blu.html

• Paper that talks about 
• How to determine how well tables are compressed

• How to determine how effective the column dictionaries are

• How to rebuild and recompress data 

• How to maintain a table to keep a good compression ratio



DML



DML

ROW ORIENTED TABLES

• Full row in a single page

• DML  not parallelized

• UPDATE is done in place

• Full logging

COLUMN ORIENTED TABLES

• Column data stored separately 

• DML (not MERGE) is parallelized

• UPDATE uses DELETE + INSERT

• Reduced logging  (95% less)

• 11.5.6: Improved trickle feed 



LOAD / INSERT 



LOAD

• Fine grained Parallelism

• Ability to collect statistics automatically

• Can load data from external sources in various formats 

• Typically invoked without logging (some index logging possible)

• Provides the best Compression rebuilding a table with 
RESETDICTIONARYONLY



LOAD v/s INSERT - Compression

Uncompressed
(Default Dictionary)

Compressed

Compressed

Synchronous Automatic 
Data Compression (Groom)

INSERTLOAD

Separate Initial Dictionary 
Phase 

Compression is pretty close
to that achieved by LOAD 



LOAD v/s INSERT - Performance

• INSERT is the preferred vehicle to insert data because in general 
with parallel formatting, parallel INSERT and highly reduced 
logging, it is faster than LOAD for column-oriented tables

• The main advantage is the ability to avoid table locking in a 
concurrent environment allowing for suitable trickle feed loading of 
data. 

BULK INSERT

T2SOURCE



INSERT – Column-Oriented Tables

• Parallelized

• Vectorized bulk INSERTs

• Synopsis optimization

• Improved Automatic Dictionary Compression (ADC) in 11.5
• Vectorized ADC

• Larger amount of data used to build the dictionaries

• Initial uncompressed data is compressed automatically

• Highly reduced logging compared to row-oriented table INSERT



Bulk Insert

Column Group Writer

Column 
Vectors

Bulk Insert



Trickle Feed INSERT before Db2 11.5.6

Trickle Feed Insert

More Logging 

Synopsis ***
Column Group Writer

Column 
Vectors



Trickle Feed INSERT in Db2 11.5.6

Column Group Writer

Insert group Split

Insert Group Buffer

Trickle Feed  Insert

Reduced
Logging 

Column Vectors



Improved Trickle Feed INSERT – 11.5.6

• Improved INSERT of a small number of rows
• Initially inserted into  “column group buffers”

• When appropriate, tail buffers are split into column vectors 

• Benefits
• Reduced storage space for small tables

• Significant reduction in log space usage
(~ 50% - 75% with INTEGER columns)

• Reduction in bufferpool dirty pages

• Modest performance improvement



DML – Trickle Feed 

11.5.5 / 11.5.6 ROW + Key 
index

COLUMN (No index)

Bulk INSERT

Bulk DELETE

Bulk UPDATE

11.5.5 ROW + Key 
index

COLUMN (No 
Index)

Trickle Feed INSERT

Trickle Feed DELETE

Trickle Feed UPDATE

11.5.6 ROW + Key 
index

COLUMN (No 
Index)

Trickle Feed INSERT

Trickle Feed DELETE

Trickle Feed UPDATE

• To enable Trickle Feed in Db2 11.5.6
• db2set DB2_COL_INSERT_GROUPS=YES
• Changes structures on disk so no fallback

• If you are OK with no version fallback you could 
benefit from better compression with the following
• db2set DB2_COL_STRING_COMPRESSION= "UNENCODED_STRING:TRUE"



INSERT – Clustering Recommendations

• Appropriate columns to cluster on 
• Highly filtering local or join predicate columns 

• Datetime columns often used in predicates are ideal if these columns are 
loaded in datetime order

• How best to cluster
• Small INSERTs  < 1 M rows : INSERT …. SELECT ….. ORDER BY C1, C2 

• Large INSERTs need to split into ranges of the leading clustering column



DELETE 



DELETE Optimizations

• Delete is parallelized in a column engine

• Deletes on Column oriented tables generally involve less I/O

• Compact logging compared to row-oriented tables
• Orders of magnitude less  I/O than row-oriented tables

• Single Row DELETE uses a fully qualified unique index if present
• Multiple rows do not use indexes



DELETE Space Usage

• With logical deletion data pages are not modified on delete

• Space for the row is consumed until space reclaim is performed via
• Automatic table maintenance (Enabled with DB2_WORKLOAD=ANALYTICS) 

• Manual invocation
• REORG TABLE … RECLAIM EXTENTS

• ALTER TABLESPACE … REDUCE

• Extents are only reclaimed if they have been fully deleted



TRUNCATE v/s DELETE v/s DROP/CREATE

• DROP TABLE / CREATE TABLE is common 
• Typical scenario and avoids keeping unused tables around
• Dictionaries need to be re-built

• DELETE
• There is an extra step to mark the rows as deleted. 
• Auto Table maintenance or REORG needs to be done to free extents
• Dictionaries are not rebuilt when new data is loaded 

• TRUNCATE
• Similar to DELETE, all rows with more control to release or re-use storage 
• Recommend using the IMMEDIATE option and as the first statement in the 

transaction for ETL temporary tables where ROLLBACK is not required.



UPDATE



UPDATE processing

• UPDATE processing is decomposed to DELETE + INSERT

• Tables easily get un-clustered with UPDATE

• Less logging than Row tables (No Before + After images )

• The effect of Indexes
• Optimized single row updates with a fully qualified unique index

• Some parallelism is lost since updates to the index are serialized 

• Indexes are updated with UPDATE even with no change in the key value 



UPDATE Optimization Tip 1 (Hack ☺)

• UPDATE T1 SET C2 = 5
• Recall UPDATE ➔ DELETE + INSERT

• The decomposed UPDATE needs to read all the columns to do the INSERT

• This may be done using random I/O when processing each row

• TIP : 
• UPDATE T1 SET C2 = 5, C3 = C3, C4 = C4

• Redundant SET clause for C3, C4 and C5 reads the column pages 
sequentially



UPDATE Optimization Tip 2

• Assume C1 is the distribution column
• UPDATE T1 SET C1 = ?, C2 = CURRENT DATE WHERE C1 = ?

• Performance TIP : 
• If C1 is set to the same parameter value as used in the WHERE clause, 

remove C1 = ? In the SET clause

• UPDATE T1 SET C1 = ?, C2 = CURRENT DATE WHERE C1 = ?

• Db2 does not know if the value will be changed and must take care of 
moving the row to a different database partition



MERGE



Merge Recommendations

• Collocate the source table and the target table if possible

• Put a UNIQUE constraint on the source key (or GROUP BY &  MAX)
• This eliminates an OLAP function that needs a SORT to flag duplicate errors

• Minimize the TEMP size by specifying the DML that deals with most 
of the rows first. 

• For MERGE parallelism, invoke each DML as separate statements 



Merge 

• Collocate the Source 
and Target if possible

• Avoid a SORT by 
defining a Unique 
source key

• One way to avoid the 
TEMP is if INSERT 
and UPDATE are 
done separately

SOURCE

SCAN

DTQ

OUTER JN

TARGET

SCAN

SORT

CTQ

GENROW

SCAN

UNION

GENROW

SCAN

NLJOIN

RCTQ

UPDATE

TARGET

TEMP

SCAN

INSERT

CTQ

TARGET

SOURCE

SCAN

GRPBY

OUTER JN

TARGET

SCAN

CTQ

GENROW

SCAN

UNION

GENROW

SCAN

NLJOIN

RCTQ

UPDATE

TARGET

TEMP

SCAN

INSERT

CTQ

TARGET



Notes on DML

• INSERT is faster than LOAD

• A single row UPDATE or DELETE uses a fully qualified unique index 
• Multi-row UPDATE or DELETE does not exploit the index

• Indexes currently limit INSERT, UPDATE or DELETE parallelism 



Performance Objects



Indexes

• For the most part the synopsis table is very effective with a table 
that is well clustered on common predicate columns

• Indexes may be considered for 
• Enforcing uniqueness

• Single row UPDATE and DELETE

• Queries that have highly filtering predicates ( <= 1% of the table)



Replicated Tables (1/2)

• Benefits
• Avoids traffic between database partitions
• Reduces the number of agents required to process the query 

• Only user maintained replicated tables (no system maintenance 
support).
• Ideal if the data does not change during query workload and the user can maintain 

the  replicated tables during ETL

• Ideal candidates to consider replicated tables
• Small dimension tables
• A vertical subset of the commonly referenced columns in medium dimension 

tables



Replicated Tables (2/2)

• Creating a replicated table SCH.T1_REPL of base table SCH.T1

• To exploit the replicated table, set these when queries are run 

CREATE TABLE SCH.T1_REPL AS (SELECT * FROM SCH.T1)
DATA INITIALLY DEFERRED REFRESH DEFERRED  MAINTAINED BY USER REPLICATED IN USERSPACE1;

SET INTEGRITY FOR SCH.T1_REPL  ALL IMMEDIATE UNCHECKED;

INSERT INTO SCH.T1_REPL  (SELECT * FROM SCH.T1);

RUNSTATS ON TABLE SCH.T1_REPL WITH DISTRIBUTION ON ALL COLUMNS AND INDEXES ALL SET PROFILE;

SET CURRENT REFRESH AGE ANY;
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION USER;



Materialized Query Tables (1/2)

• Benefits
• Exploits pre-computed portions of a query for improved query performance

• Only user-maintained MQTs are supported
• No “immediate” or “deferred” system maintenance support.
• Ideal if the data does not change during query workload and the user can 

maintain the MQTs during ETL

• Ideal candidate MQTs
• Common expensive joins with relatively small results
• Aggregations over just the fact table grouping on subsets of the foreign keys 



Materialized Query Tables (2/2)

• Creating a replicated table SCH.T1_REPL of table SCH.T1

• To use the MQT, set the following when the queries are run

CREATE TABLE SCH.MQT_YEAR AS 
(    SELECT COUNTRY_KEY, ORGANIZATION_KEY,  

SUM(CURRENT_YEAR_REV) AS SUM_CY_REV, 
SUM(CURRENT_YEAR_COST) AS SUM_CY_COST

FROM   SCH.REVENUE_COST_PERIOD 
GROUP BY COUNTRY_KEY, ORGANIZATION_KEY )

DATA INITIALLY DEFERRED REFRESH DEFERRED 
MAINTAINED BY USER 
DISTRBUTE BY (COUNTRY_KEY,ORGANIZATION_KEY) 
ORGANIZE BY COLUMN IN USERSPACE1;

SET CURRENT REFRESH AGE ANY;
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION USER;

SET INTEGRITY FOR SCH.MQT_YEAR ALL IMMEDIATE UNCHECKED;

INSERT INTO SCH.MQT_YEAR  
(    SELECT COUNTRY_KEY, ORGANIZATION_KEY,  

SUM(CURRENT_YEAR_REV) AS SUM_CY_REV, 
SUM(CURRENT_YEAR_COST) AS SUM_CY_COST

FROM   SCH.REVENUE_COST_PERIOD 
GROUP BY COUNTRY_KEY, ORGANIZATION_KEY );

RUNSTATS ON TABLE SCH.MQT_YEAR WITH DISTRIBUTION ON ALL 
COLUMNS;



Summary

• Various recommendations given to improve DML performance

• Trickle feed INSERT performance is significantly improved in Db2 
11.5.6
• Consider enabling this feature if version fallback is not an option

• If appropriate, consider User Maintained Replicated Tables and  
MQTs as part of the ETL to improve query workload performance 



Please fill out your session evaluation!

Speaker: Calisto Zuzarte
Company: IBM
Email Address: calisto@ca.ibm.com


