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Agenda

• Learn the best practices:  
• Required for OS configuration to ensure a secure Db2 setup
• Authenticating users to Db2
• Controlling what data users have access to through various authorization 

features of Db2
• Encrypting both data at rest and data in motion
• Tracking database activity using audit
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Our Goals

• Practical advice for a novice or intermediate database administrator to 
setup an initially secure Db2 server

• Focus on the “biggest bang for the buck” items

• Best practices listed are intended as a starting point
• Advanced setups my differ from those listed here
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System setup details

• To limit our talk to 1 hour, we will make some simplifying assumptions

• Single server version of Db2
• not DPF or pureScale

• RHEL 7
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Learn the best practices required for OS configuration to 
ensure a secure Db2 setup.
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The server for Db2

• Use a dedicated server for Db2
• Files like db2diag.log are world readable
• Want strong control over who can log into the server, only administrators
• Historically we’ve had more security vulnerabilities that can only be exploited by 

users who can log into the OS than those that can be exploited remotely

• Don’t change Db2 installed file permissions
• This can often lead to unexpected behaviour

• Only instance owner needs access to database path and transaction logs
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Configure LDAP authentication

• Make sure necessary packages are installed
yum install -y openldap-clients sssd authconfig sssd-client

• Enable SSSD and LDAP
authconfig --enableshadow --passalgo=sha512 --enablesssd --enablesssdauth --
enableldap --enableldapauth --enableldaptls --ldapserver=”<hostname>" --
ldapbasedn=”<basedn, o=…>" --update

• Download your Root CA cert for the LDAP server
• Add to ‘/etc/openldap/cacerts/’

• Restart SSSD
systemctl restart sssd.service
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Control Who Can Login to the server

• Make a copy of the pam file for later use (before it gets changed)
cp /etc/pam.d/system-auth /etc/pam.d/db2

• Modify /etc/security/access.conf
+ : root wheel : ALL
+ : db2inst1 : ALL
- : ALL : ALL

• Modify /etc/sysconfig/authconfig
• Change the following line to yes

USEPAMACCESS=yes

• Run `authconfig --updateall`
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Create instance accounts

• Have root create instance owner and fenced mode user
groupadd db2iadm1
groupadd db2fsdm1
useradd -g db2iadm1 db2inst1
useradd -g db2fsdm1 db2fenc1
passwd db2inst1
passwd db2fenc1

• These names are common, but not required
• Limited to 8 characters, not many special characters supported
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Install Db2

• Perform a typical/default install of Db2 as root
./db2_install -p SERVER

• Create instance
./db2icrt -s ese -u db2fenc1 db2inst1
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Add database users to OS if not using LDAP

• useradd <username>
• passwd <username>

• Do not add these users to access.conf, you don’t want them logging into 
the OS
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Where to go next with OS setup

• Firewalls
• Typically only need the port used for TLS (SSL_SVCENAME) open, plus SSH

• Other typical server hardening
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Learn the best practices for securely authenticating users to Db2
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Authentication Types

• Authentication is the act of checking your proof of identity
• Abbreviation AUTHN

• The AUTHENTICATION parameter in the Database Manager Configuration determines 
which security mechanism Db2 uses for authentication

• Users are always defined externally to Db2

Example authentication types:
• SERVER_ENCRYPT
• SERVER
• DATA_ENCRYPT
• KERBEROS
• GSSPLUGIN
• TOKEN_SERVER_ENCRYPT

Example user definition locations
• Operating System
• LDAP
• Kerberos
• Plugin
• Identity Provider Token
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Best Practice - Use SERVER_ENCRYPT

• Use SERVER_ENCRYPT
• Encrypts usernames and passwords sent during connect
• Supports local users or LDAP

• Do NOT use CLIENT
• Anyone with a network connection can impersonate any other user

• Do NOT use DATA_ENCRYPT
• Deprecated, only supports DES encryption
• Use TLS instead
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Using SERVER_ENCRYPT securely

• Default is DES encryption, but we really want AES
• set ALTERNATE_AUTH_ENC to AES_ONLY in DBM CFG

• For historical compatibility reasons, SERVER_ENCRYPT does not enforce 
encryption for JDBC connections
• You can force its use 

• db2set DB2AUTH=JCC_ENFORCE_SECMEC
• Or log its abuse

• db2set DB2AUTH=JCC_NOENFORCE_SECMEC_MSG
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Transparent LDAP

• The most popular authentication method used is SERVER_ENCRYPT with 
Transparent LDAP enabled
• db2set DB2AUTH=OSAUTHDB
• Db2 makes OS calls via PAM APIs (Linux),  OS in turn looks locally or in LDAP
• LDAP usage is transparent to Db2 as it is handled by OS
• Even if not using transparent LDAP right now, you can still ‘future-proof’ your 

instance by changing this now

• LDAP plugins require ALL users to be defined at LDAP server
• Many customers want instance owner and FMP user defined locally
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Transparent LDAP Configuration (1/2)

• Db2 requires its own PAM configuration file in /etc/pam.d/db2

• In a previous step we made a copy of the system PAM configuration
• We do not want the rule that limits access in the Db2 config, otherwise users will not 

be able to login unless they can log into the OS
• Make sure this line is not present:

• account required pam_access.so
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Authentication Cache

• New feature in Db2 11.5.3.0
• Improve performance for slow authentication and group lookup

• Db2 maintains cache of
• Hashed password
• Group membership

• Configured at database level
• AUTHN_CACHE_USERS

• How many users are in the cache (controls how much memory is used)
• AUTHN_CACHE_DURATION

• How long a cached entry is valid for
• Expired entries will force authentication next time the user connects
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Where to go next with authentication

• Advanced Authentication Types
• Kerberos

• Single Sign-on support
• JWT

• Token authentication when integrating with an identify provider and web application
• LDAP Plugins

• Db2 makes LDAP API calls directly to an LDAP server
• Custom GSSAPI plugins

• You can create your own authentication code (in-depth C programming required)

• SRVCON_AUTH
• Separate local authorization from incoming connect authentication
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Learn the best practices for controlling what data users have 
access to through various authorization features of Db2
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Authorization - terminology

• Authorization is the go/no go decision of whether an action can take place
• Abbreviation AUTHZ

• Authorities are collections of permissions centered around a related topic
• Ex. SYSADM, DBADM, SECADM

• Privileges are individual permissions on specific objects
• SELECT on a TABLE T1

22



Summary of authorities

• Authorities are hierarchical, allowing delegation of common tasks

• SYSADM  à SYSCTRL  à SYSMAINT  à SYSMON
• SECADM  à ACCESSCTRL
• DATAACCESS
• DBADM à SQLADM à EXPLAIN

à WLMADM
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Which authorities to use

• There are a lot of authorities - should you use them all?
• The more they are held by distinct users the better, but given our goal of a practical 

setup for smaller cases, then no, don’t try to use them all
• Database creator gets SECADM, ACCESSCTRL, DATAACCESS, DBADM
• First separation is to focus on is having SECADM and DBADM held by 

different users
• Numerous advanced security functions are only usable by SECADM

• Secondly, eliminate the use of DATAACCESS
• Watch out, DATAACCESS is granted by default with DBADM
• Be explicit in all the permissions you grant
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Authority Configuration

• These recommendations leave us with two distinct administrators
• Database Administrator

• SYSADM
• DBADM
• ACCESSCTRL (to handle day to day grants/revokes)

• Security Administrator
• SECADM - advanced security functionality and auditing of Db admins

• The database creator has had DATAACCESS revoked by SECADM
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Numerous privileges are granted to PUBLIC during 
create database

• There’s a few that should be removed
• CONNECT

• Normally Db2 can authenticate a wider range of users than should be connecting to your database 
- for example everyone in your LDAP server

• IMPLICIT SCHEMA
• Implicit schemas (no CREATE SCHEMA statement) are owned by the system and PUBLIC can create 

objects in it
• Users should be explicitly creating schemas (DBADM has implicit IMPLICIT_SCHEMA)

• CREATETAB
• Most users have no need to create tables, this should be a controled activity

• BINDADD
• Most users have no need to create packages
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Several privileges to make sure you do not grant to 
PUBLIC

• A few privileges may not be so obvious to strongly restricted:

• CREATE_EXTERNAL_ROUTINE
• The ability to create C and Java routines that are run at the server
• Given the broad capabilities of C/Java code, these must be restricted

• CREATE_NOT_FENCED_ROUTINE
• Not fenced (aka trusted) routines run outside the Fenced Mode Process (FMP) 

sandbox and instead directly inside the Db2 server
• It’s very easy for these routines to crash or corrupt the Db2 server when written in C 

or Java
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Views for authorization delegation

• Views can be used to control what data users see
• A user can be granted SELECT on the view without having access to the 

underlying base table(s) and other objects
• View definer needs the access, but not the view user
• SECADM and ACCESSCTRL can grant the SELECT
• View DEFINER is given CONTROL, which includes the ability to GRANT on the view, if 

they had CONTROL on the base table(s) or DBADM/DATAACCESS
• Users with DATAACCESS can always select directly from the base table, so 

a view will not protect against these users
• Otherwise views present a useful security mechanism
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Routines for authorization delegation

• Routines can modify and return data to the callers
• A user can be granted EXECUTE on a routine without having access to the 

underlying tables and other objects
• Routine definer needs the access, but not the routine caller

• For SQL routines.  Dynamic and non-SQL routines are more complex
• Routine definer given EXECUTE WITH GRANT
• SECADM and ACCESSCTRL can also grant EXECUTE

• Allows you to encapsulate business logic into the routine and control 
access at the routine level
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Using roles and groups to ease authorization 
maintenance

• An application user may require access to dozens or more objects

• If you can define your users according to their job, you can grant privileges 
and authorities to roles or groups representing those jobs

• Grant the user membership in the appropriate role or group

• If a user changes jobs, it’s simple to remove them from the role or group 
instead of individual objects
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Groups vs Roles (1/3)

• For certain objects, Db2 records a dependency of the 
owner’s privilege to access dependent objects
• Ex. a user having SELECT on a TABLE to create a VIEW

• The user must maintain those privileges
• If the user loses those privileges, the objects will be 

marked as invalid or inoperative
• Losing SELECT on the TABLE will make the VIEW inoperative

• Special case for users who hold DATAACCESS when 
the object is created
• Dependency is not recorded

Affected Objects:
• Views
• Materialized Query 

Tables (MQTs)
• SQL routines
• Triggers
• Packages containing 

static SQL
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Groups vs Roles (2/3)

• For creation of listed objects, Db2 does not consider privileges obtained 
through groups
• Db2 is not immediately aware of group changes in order to invalidate objects

• Roles alleviate this problem, Db2 will consider privileges from roles for 
these cases
• Except for roles obtained through groups
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Groups vs Roles (3/3)

• Using LDAP for groups?
• If possible, use roles for administrators who will be creating objects

• Otherwise you must grant privileges to individual users for object creation
• Use groups for application users

• No LDAP
• Use roles for any in-database privileges
• Still need groups for SYS* authorities at the instance level

33



Validate a user’s authorities

• SYSPROC.AUTH_LIST_AUTHORITES_FOR_AUTHID table function
• List the instance and database authorities held by a user
• Shows if they are direct, through a group or role

SELECT *    FROM TABLE (SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID (‘MYUSER’, ‘U’) ) AS T 

AUTHORITY                 D_USER D_GROUP D_PUBLIC ROLE_USER ROLE_GROUP ROLE_PUBLIC D_ROLE
------------------------- ------ ------- -------- --------- ---------- ----------- ------
ACCESSCTRL                N      N       N        N         N          N           *     
CONNECT                   N      N       Y        N         N          N           *     
DATAACCESS                N      N       N        N         N          N           *     
DBADM                     Y      Y       N        N         N          N           *     
SECADM                    Y      N       N        N         N          N           *     
SYSADM                    *      Y       *        *         *          *           *     
…
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Check what database authorities have been 
granted
• The SQL in the speaker notes will show database authorities that are held 

by:
• Users, groups, roles, PUBLIC
• Also via nested roles: ex. DBADM granted to role1 granted to use U3

AUTHORITY                 GRANTEE      GRANTEETYPE  VIA          VIATYPE     
------------------------- ------------ ------------ ------------ ------------
DBADM                     U1           U            - -
DBADM                     G1           G            - -
DBADM                     R1           R            - -
DBADM                     U3           U            R1           R 
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Check what privileges have been granted

• The view SYSIBMADM.PRIVILEGES is a summary of all the privileges stored 
in the catalog tables (it’s a big UNION ALL statement)

SELECT AUTHID, PRIVILEGE, OBJECTNAME, OBJECTSCHEMA, OBJECTTYPE
FROM SYSIBMADM.PRIVILEGES

AUTHID       PRIVILEGE   OBJECTNAME              OBJECTSCHEMA     OBJECTTYPE
--------...- ----------- -------------------...- ------------...- ----------
...-
GSTAGER      CONTROL     EMPLOYEE                GSTAGER          TABLE
GSTAGER      ALTER       EMPLOYEE                GSTAGER          TABLE
GSTAGER      DELETE      EMPLOYEE                GSTAGER          TABLE
GSTAGER      INSERT      EMPLOYEE                GSTAGER          TABLE
GSTAGER      SELECT      EMPLOYEE                GSTAGER          TABLE
GSTAGER      UPDATE      EMPLOYEE                GSTAGER          TABLE
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Look at individual catalog views for targeted 
details
Some common SYSCAT views
• DBAUTH
• TABAUTH
• SCHEMAAUTH
• ROUTINEAUTH
• <OBJ>AUTH

37



Where to go next with authorization

• CREATE DATABASE RESTRICTIVE
• Eliminates all grants to PUBLIC at create db time and in the future
• Due to Db2’s use of packages for SQL execution from CLP, CLI etc, a difficult task to 

initially get setup

• Separation of Duties
• Ideal goal is the user who grants authorities is different than those who can access 

data
• Different user for SECADM, ACCESSCTRL, DBADM etc.
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Where to go next continued

• Row and Column Access Control
• Column masking and row permissions
• Custom SQL rules to control what users have access to

• Label Based Access Control (LBAC)
• Complicated access control rules based on labels
• RCAC is much more user friendly

• Trusted Context
• Rules that define a trusted connection, which allows

• Dynamic access to a role only within that connection
• Ability to switch to other users (for middle tier applications to preserve end user identity)
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Learn the best practices for encrypting both data at rest and 
data in motion
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TLS - Transport Layer Security (1/3)

• TLS provides encryption of data in motion, over the network
• Any references to SSL are synonyms for TLS 

• Configure it in place of TCPIP for client-server communication
• Don’t forget to use it for HADR as well!
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TLS - Transport Layer Security (2/3)

• Unfortunately, the default version of TLS that Db2 uses is TLS 1.0 and 1.1, 
which are insecure with known vulnerabilities

• You must configure the use of TLS 1.2
• set SSL_VERSIONS to TLSV12 in dbm cfg
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TLS - Transport Layer Security (3/3)

• Make sure keystore files are secure at client and server
• Access to private key at server could allow someone to masquerade as server
• Access to keystore file at client could allow accepting rogue CA signed certificates 

(fake servers)

• File should only be readable/writeable by:
• Server - the instance owner
• Client - the application
• These are the defaults, don’t change them
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Native Encryption (1/3)

• Db2 Native Encryption provides built in, application transparent 
encryption of data at rest (on disk) for:
• Database container files
• Transaction Logs
• Backup files

• Protects against offline attacks against data
• accessing the data outside of the database manager
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Native Encryption (2/3)

• Enabling native encryption is very easy
• ENCRYPT keyword on CREATE DATABASE or RESTORE

• Key management is difficult
• Administrative challenge to manage keys
• Keys must be backed up, maintained for long periods
• You can end up with numerous keys

• Each database should have its own key, they can also be rotated
• Enable native encryption if you can manage the administration
• Failure can mean complete loss of data if un-backed up keys are lost

45



Native Encryption (3/3)

• Similar to TLS, you need to ensure keystores are protected
• Only the instance owner should have read/write access

• Make sure your keystores are backed up!!!
• Also make sure you know the password to open those keystores
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Where to go next with native encryption

• Switch from keystore files to centralized key managers
• KMIP servers are most popular

• Similar to LDAP server for keys
• Hardware Security Modules provide ultimate in key security

• Often more difficult to setup and use
• Provide central management of keys, backup, access control etc.

• Investigate how keys are different for databases and backups
• Default is the use the same key, but they can be different
• Useful if you want to restore the database somewhere, but don’t want to expose the 

live key for the database (test system etc).
• You can also encrypt one or the other (default is both)
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Learn the best practices for tracking database activity using 
audit
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Audit

• Db2 has a built-in audit facility that allows you to track actions within the 
database

• Two levels of configuration are provided to fine tune what is audited

Categories
• AUDIT - use of audit facility
• CHECKING - authorization checks
• SECMAINT - grants/revokes
• OBJMAINT - object creation/deletion (some alters)
• CONTEXT - contextual information for other events
• EXECUTE - SQL statement execution
• SYSADMIN - SYS* actions
• VALIDATE - authentication checks

Objects to Audit
• Database
• Users/Groups/Roles
• Authorities
• Tables
• Trusted Contexts
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Impact of Audit

• Auditing everything can have a substantial impact to performance on a 
busy OLTP system
• AUDIT_BUF_SZ in the dbm cfg can be configured to allow buffered writes of audit 

events drastically improving performance

• The amount of data generated by auditing everything can be 
overwhelming on a busy OLTP system
• Gigabytes per minute

• Audit only what you need
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Which categories to audit

• AUDIT, SECMAINT, OBJMAINT and SYSADMIN 
events occur infrequently enough they can 
generally always be audited

• CHECKING and VALIDATE have a medium 
impact, audit failures

• EXECUTE and CONTEXT have a high impact, 
need to be very targeted

• EXECUTE
• CONTEXT
• CHECKING
• VALIDATE
• SYSADMIN
• OBJMAINT
• SECMAINT
• AUDIT
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Audit Recommendations

• Audit everything at the instance level
• Audit the database for AUDIT, SECMAINT, OBJMAINT, SYSADMIN
• Audit failures at the database for CHECKING, VALIDATE
• Audit admins for everything
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Analyzing Audit Output

• Db2 writes to the active log file, which is then archived (copied)
• Only the instance owner should have read/write permissions on these 

files
• Can contain SQL statements and input data, may be considered sensitive

• Output is in three formats: 
• text based report
• CSV suitable for db2load
• syslog

• Best practice is to analyze the output on a different system
• Don’t want admins able to hide their tracks by modifying the audit log in tables
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Where to go next with audit

• Previous recommendations audit as much as possible without a large 
system impact
• You may have additional goals requiring more auditing

• CHANGE HISTORY EVENT MONITOR can provide additional insight into 
database activities

• There is no guidance on analyzing audit output
• 3rd party products such as IBM Guardium Data Protection for Databases can provide 

advanced tooling and analysis
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Stay up to date with fixes!

• 60% of data breaches are the result of unpatched systems
• Any security related APAR is accompanied by a security bulletin
• Describes at a very high level the impact of the vulnerability
• Vague on purpose, keep details out of the hands of hackers

• See the list of published security bulletins
• Security fixes are published simultaneously across all supported releases 

as either fixpacks or special builds
• Subscribe to My Notifications to find out about new bulletins
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Advanced Hardening Actions

• Db2 STIG
• Security Technical Implementation Guides by DoD

• Centre for Internet Security Benchmark for Db2
• Guidelines for securing a Db2 Server
• Updates coming soon for V11.5
• Community driven effort, feel free to participate!

• Both are a little old, but still provide good practical advice

• Guardium Vulnerability Assessment
• Detect vulnerabilities and misconfigurations in your database server
• Encodes rules from STIG and CIS guides
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