
© 2017 IBM Corporation

Let Me Make This Clear (Things That Plenty of

DB2 for z/OS People Get Wrong)

TRIDEX – March 29. 2017

Robert Catterall

rfcatter@us.ibm.com

© 2017 IBM Corporation2

Introduction

▪ In the course of my work, I get a lot of questions from a lot of DB2 for z/OS people

▪Some of these questions suggest widespread

misunderstanding of certain DB2 features and functions

▪ In this presentation, I’ll highlight some of these

misunderstandings and provide (I hope) some clarity

 I’ll highlight misunderstandings in dark red italics

Robert,

Could you clear

something up for me?

© 2017 IBM Corporation3

Agenda

▪zIIP offload and native SQL procedures

▪zIIP offload and dynamic SQL

▪Selective query parallelism

▪Java stored procedures

▪High-performance DBATs

▪RELEASE(DEALLOCATE) “break-in”

▪Buffer pool monitoring

▪Group buffer pool monitoring

▪Page-fixed buffer pools and 1 MB page

frames

▪ Inactive DBATs versus inactive

connections

▪Partition-by-growth and smaller tables

▪Dynamic versus ad-hoc SQL

▪DB2 address space prioritization

▪DB2-managed archiving versus

system-time temporal

▪The IBM Data Server Driver versus

DB2 Connect

▪DB2 Connect versus z/OS Connect

© 2017 IBM Corporation4

zIIP offload and native SQL procedures

▪A lot of people are under the impression that native SQL procedure execution is

always zIIP-eligible

▪ In fact, native SQL procedure execution is only zIIP-eligible when the caller is a

DRDA requester – in other words, when the CALL comes through DDF

 Why? Because zIIP eligibility depends on a process running under a preemptible SRB versus a

TCB or a non-preemptible SRB

 A native SQL procedure runs under the task of the process that called it, and when the caller is

a DRDA requester, that task is a preemptible SRB in the DB2 DDF address space – that makes

the native SQL procedure zIIP-eligible

?

© 2017 IBM Corporation5

More on native SQL procedure zIIP eligibility

▪When a native SQL procedure is called by a process that runs under a TCB (e.g.,

a CICS transaction or a batch job), it will run under that TCB and so will not be

zIIP-eligible

▪Question: if a DRDA requester calls an external DB2 stored procedure, and that

stored procedure calls a native SQL procedure, will the native SQL procedure’s

execution be zIIP-eligible?

 Answer: NO, because an external stored procedure always runs under its own TCB in a stored

procedure address space, and the nested native SQL procedure will run under that TCB and so

will not be zIIP-eligible

5

TCB Preemptible SRB

Note: when an external stored procedure is called by a DRDA requester, you will see a little zIIP

offload, because associated send/receive processing is done under preemptible SRB in DDF

© 2017 IBM Corporation6

Still on the topic of native SQL procedures and zIIPs

▪Some people think that native SQL procedures, when they are zIIP-eligible, are

100% zIIP-offload-able

▪Nope – when a native SQL procedure is zIIP-eligible (i.e., when it is called by a

DRDA requester), it will be up to 60% zIIP-offload-able

 Why? Because SQL statements that execute under preemptible SRBs in the DB2 DDF address

space are up to 60% zIIP-offload-able, and a native SQL procedure is just SQL

 An implication: going from SQL DML statements issued directly from DRDA clients to packaging

SQL DML in native SQL procedures is not a way to boost zIIP offload, since the SQL is up to

60% zIIP-offload-able either way

• You can boost zIIP offload when you change external stored procedures called by DRDA requesters to

native SQL procedures

6

zIIP offload-o-meter

© 2017 IBM Corporation7

zIIP offload and dynamic SQL

▪Some people have this idea that there’s something about dynamic SQL that affects

zIIP offload-ability

▪The zIIP eligibility of a SQL statement – whether dynamic or static, depends on the

type of task under which the statement executes

 Preemptible SRB: zIIP-eligible

 TCB: not zIIP-eligible

▪Note: SQL statements issued by DRDA requesters (or by native SQL procedures

called by DRDA requesters) aren’t the only ones that run under preemptible SRBs

 When a query – static or dynamic – is parallelized by DB2, the “pieces” of the spilt query run under

preemptible SRBs and are up to 80% zIIP-offload-able (100% in a DB2 12 system)

7

zIIP

“Look the same to me”

© 2017 IBM Corporation8

Selective query parallelism

▪Some people are interested in DB2 query parallelism as a means of getting zIIP

offload for processes, such as batch jobs, that have “local” (i.e., not through DDF)

connections to DB2, but…

 …they think that there is no good option for granular control of query parallelism

• Think that, for dynamic SQL, either ALL queries are made candidates for parallelization via specification

of CDSSRDEF=ANY in ZPARM, or queries are selectively made candidates for parallelism via SET

CURRENT DEGREE = ‘ANY’

• Think that, for static SQL, only option is bind of package with DEGREE(ANY)

• Think that, for all queries, maximum degree of parallelization is whatever is specified for PARAMDEG in

ZPARM

▪What these people don’t know about is the SYSQUERYOPTS table in the DB2

catalog

8

“What’s that?”

© 2017 IBM Corporation9

More on SYSIBM.SYSQUERYOPTS

▪ Introduced with DB2 10 for z/OS in new-function mode

▪Used in conjunction with BIND QUERY command and SYSIBM.SYSQUERY table

▪Lets you specify that a specific query (static or dynamic) is to be a candidate for

parallelization, along with a maximum degree of parallelization for that specific

query – with NO code changes needed

▪Here’s a blog entry with more details:

http://robertsdb2blog.blogspot.com/2017/02/statement-level-control-of-db2-for-zos.html

9

“OK, static query ABC can be parallelized,
with a maximum degree of 4.

Dynamic query XYZ can be parallelized,
with a maximum degree of 8.”

© 2017 IBM Corporation10

Java stored procedures

▪ I’ve seen 2 misunderstandings pertaining to Java stored procedures:

 They’re a bad idea: they perform poorly and are CPU and memory hogs

 They are 100% zIIP-offload-able

▪ “Poor-performing, resource hog” view has roots in the situation of not-too-many

years ago, which has changed

 z/OS is a great Java environment: 1200% performance improvement from Java 5 on a z9

mainframe to Java 7 on an EC12

• Even better performance with Java 8 on a z13, thanks to features such as SIMD (Single Instruction

Multiple Data) and SMT (Simultaneous Multi-Threading)

 And, Java doesn’t “hog” memory – it exploits large memory resources (as does DB2 for z/OS),

and z Systems memory gets cheaper all the time

 And, DB2 11 delivered important enhancements for Java stored procedures

• One 64-bit multi-threaded JVM per Java stored procedure address space, versus a single-threaded 31-

bit JVM per Java stored procedure in an address space

10

© 2017 IBM Corporation11

Java stored procedures and zIIP eligibility

▪No, they are not 100% zIIP-eligible

 Yes, Java code execution in a z/OS system is zIIP-eligible, but SQL is not Java, so SQL

statements issued by a Java stored procedure are not zIIP-eligible

• Recall that SQL statements are zIIP-eligible when they execute under a preemptible SRB – SQL

statements issued by a Java stored procedure execute under the TCB of the Java stored procedure

• In truth, you would likely get a small amount of zIIP offload for SQL statements issued by a Java stored

procedure, because the zIIP engine used to execute the procedure’s Java code is “held on to” for a little

while when SQL starts executing

zIIP offload-o-meter

© 2017 IBM Corporation12

High-performance DBATs

▪Some people think, “We can’t use high-performance DBATs, because we wouldn’t

be able to get ALTERs and BIND/REBIND stuff done”

▪ It is true that any combination of persistent threads (i.e., threads that persist

through COMMITs) and RELEASE(DEALLOCATE) packages can interfere with

ALTER, BIND/REBIND, and more, but…

 …you have to keep in mind that these operations might be specifically blocked by high-

performance DBATs, as opposed to being generally blocked

• If package PKG1 is bound with RELEASE(DEALLOCATE) and is allocated to a high-performance DBAT,

and PKG1 is not dependent on table T1, an ALTER of T1 will not be blocked because of package PKG1

 If you determine that an ALTER (or BIND/REBIND, or online REORG that would materialize a

pending DDL change) would be blocked by a high-performance DBAT, use command to

temporarily “turn off” high-performance DBATs:

•-MODIFY DDF PKGREL(COMMIT)

12

Hi-Perf

© 2017 IBM Corporation13

More on RELEASE(DEALLOCATE) and concurrency

▪Some think they can’t use RELEASE(DEALLOCATE) packages at all – not with

high-performance DBATs, not with anything – because they will cause

concurrency problems

▪First, get the concurrency facts straight

 Does RELEASE(DEALLOCATE) cause page or row locks to be retained until thread

deallocation?

• NO – X locks on pages and rows are always released at COMMIT; S locks are typically released when

DB2 moves to the next page or row

 Table space locks are held longer with RELEASE(DEALLOCATE) – is that a problem?

• Generally speaking, NO, because table space locks are almost always of the intent variety (e.g., IX, IS),

and intent locks do not interfere with each other

• DB2 utilities have long been able to “break in” on RELEASE(DEALLOCATE) packages, by way of drain

locking (claims are always released at COMMIT)

13

© 2017 IBM Corporation14

DB2 11 and RELEASE(DEALLOCATE) “break in”

▪The real concurrency concern has been related to packages

 A package cannot be replaced or invalidated when it is in use

 A RELEASE(DEALLOCATE) package is considered to be continuously in-use as long as the

thread to which it is allocated exists

 Because of that, it used to be that an operation that would replace or invalidate package XYZ would

fail if package XYZ were bound with RELEASE(DEALLOCATE) and allocated to a persistent thread

• Failing operation could be a BIND/REBIND, an ALTER, or an online REORG that would materialize a

pending DDL change

▪This changed with DB2 11 (in new-function mode)

 If a BIND/REBIND, ALTER or pending DDL-materializing online REORG would be blocked by a

RELEASE(DEALLOCATE) package allocated to a persistent thread, DB2 can “break in” to let

blocked operation proceed

• Package’s behavior will be temporarily changed to RELEASE(COMMIT)

14

© 2017 IBM Corporation15

A little more on RELEASE(DEALLOCATE) “break-in”

▪Some folks think that this only applies to RELEASE(DEALLOCATE) packages

 Not so – in addition to switching package behavior to RELEASE(COMMIT), the new DB2 11

functionality will “drain” package to get its use count to 0

 That provides relief from blockages caused by RELEASE(COMMIT) packages that would

otherwise be “always in use” due to frequency of execution

▪Some people think that this applies to all kinds of persistent threads

 They’re actually half right

• RELEASE(DEALLOCATE) “break-in,” as it pertains to “in-DB2” threads, does apply to all types of

persistent threads, high-performance DBATs included – the package’s behavior will be changed to

RELEASE(COMMIT) at next commit

• “Break-in” does not apply to high-performance DBATs that are not processing in DB2 and have

RELEASE(DEALLOCATE) packages allocated to them

• So, even with DB2 11, it’s best to issue -MODIFY DDF PKGREL(COMMIT) to clear out high-

performance DBATs as needed for DBA tasks

15

© 2017 IBM Corporation16

Buffer pool monitoring

▪Lots of people think that the “hit ratio” is the key metric when it comes to buffer

pool monitoring and tuning

▪As far as I’m concerned, a buffer pool’s hit ratio is of very little value

▪ I’d much rather focus on a buffer pool’s total read I/O rate

 That’s total synchronous reads plus total prefetch reads (sequential, list, dynamic) for a buffer

pool, per second

• Can get these numbers from DB2 monitor statistics long report or online display of buffer pool activity,

or from DB2 command -DISPLAY BUFFERPOOL DETAIL

 What’s your objective for a buffer pool?

• Total read I/O rate < 1000 per second is good, < 100 per second is great

• Of course, for a buffer pool used to “pin” one or more objects (i.e., cache them in memory in their

entirety), your objective is a total read I/O rate of zero

16

© 2017 IBM Corporation17

Group buffer pool monitoring

▪Some think that the only metrics that matter are the “double zeroes” (0 directory

entry reclaims, 0 write failures due to lack of storage)

▪Another key metric is often overlooked: the “XI read hit ratio”

 That’s the percentage of the time that synchronous read requests directed to a GBP because of

local buffer cross invalidation (XI) resulted in “page found”

• (sync reads due to XI, data returned) / (total sync reads due to XI)

• Numbers can be found in DB2 monitor statistics long report or online display of GBP activity, or via DB2

command -DISPLAY GROUPBUFFERPOOL MDETAIL

 Buffer invalidations happen when directory entry reclaims occur, and when a page cached

locally by DB2 member X is changed on member Y

• If there are no directory entry reclaims, buffer invalidations must be due to pages being changed on

other members of the data sharing group

• If a page was changed on another DB2 member, it had to have been written to the GBP – when you go

to the GBP looking for that page, you’re hoping it’s still there

17

A hit ratio that does matter to me

© 2017 IBM Corporation18

More on the GBP XI read hit ratio

▪The more data entries there are in a GBP, the longer pages written to the GBP will

stay there, and the higher the XI read hit ratio will go

 I’ve often seen XI read hit ratios above 80%, even above 90%

 GBP XI read hits are good – generally two orders of magnitude faster than a disk read

▪ If ALLOWAUTOALT(YES) is specified for a GBP in the CFRM policy, check the

GBP’s ratio of directory entries to data entries

 Default ratio is 5:1

 I’ve seen ratios in excess of 250:1 with ALLOWAUTOALT(YES) in effect

 If you see a super-high ratio of directory entries to data entries for a GBP, one effect may be a

low XI read hit ratio

 If that’s the case, consider enlarging the GBP (given sufficient CF memory) and changing the

ratio of directory to data entries to something closer to 5:1

 Low XI read hit ratio no big deal if few GBP reads due to XI (e.g., < 1000/hour)

18

© 2017 IBM Corporation19

Page-fixed buffer pools and 1 MB page frames

▪Some people think that page-fixing buffers is only good for buffer pools that have

a high read I/O rate

▪ It is good for such pools (because they make I/Os cheaper), but it is also good for

high-activity pools, IF the buffers can reside in 1 MB real storage page frames

(true even if pool has low read I/O rate)

 I’d say that a pool with more than 1000 GETPAGEs/second is “high activity”

 Availability of 1 MB page frames depends on the value of the LFAREA parameter in the

IEASYSxx member of SYS1.PARMLIB

 When a buffer pool is defined with PGFIX(YES), DB2 will automatically seek to have the pool

backed by 1 MB page frames

 Why 1 MB page frames are good for high-activity pools: they make translation of virtual storage

to real storage addresses more CPU-efficient

19

1 MB

© 2017 IBM Corporation20

Inactive DBATs versus inactive connections

▪LOTS of people think that DBATs go “inactive” when they are not being used – the

DB2 documentation even refers to inactive DBATs

▪ In fact, DBATs do not go inactive

 It’s connections that go inactive when they are not in use

 When a transaction using a “regular” DBAT (as opposed to a high-performance DBAT)

completes, the DBAT goes into a disconnected – not an inactive – state

 What’s important: a disconnected DBAT (a DBAT in the DBAT pool) takes up a thread “slot” – it

counts towards the MAXDBAT limit

20

D
B

A
T

“I’m not inactive –
I’m disconnected”

© 2017 IBM Corporation21

Partition-by-growth and smaller tables

▪Some people think that partition-by-growth table spaces are only appropriate for

large tables

▪Not so

 People under this impression may be influenced by the word “partition,” which traditionally

(before universal table spaces) was associated with large tables

 A PBG table space’s DSSIZE (smallest value is 1 GB) is the space-used value that triggers

allocation of an additional partition for the table space

 A small table won’t grow to the DSSIZE value, so the PBG will be a one-partition table space

 The DSSIZE value doesn’t determine disk space utilization – that’s determined by amount of

data in table, PRIQTY, and SECQTY

21

OK Also OK

© 2017 IBM Corporation22

Dynamic versus ad-hoc SQL

▪Some DB2 people use the terms interchangeably, and end up opposing

applications that will issue dynamic SQL because that’s equated with ad-hoc SQL

 Result: developers can get the impression that their applications are not wanted on the z

Systems platform (not good)

▪Yes, ad-hoc SQL is dynamic, but the reverse is not necessarily true

 Consider a Java application that would access DB2 data via JDBC calls

• That’ll be dynamic SQL on the DB2 side, but more than likely the queries are hard-coded in the Java

programs – not ad-hoc

 Keep in mind that “static” SQL is a DB2 concept – many current developers who don’t have a

mainframe heritage are not familiar with this concept

 Bottom line: don’t paint all dynamic SQL with the same brush

• Important: developers should know that their applications are welcome on the DB2 for z/OS platform

22

© 2017 IBM Corporation23

DB2 address space prioritization

▪At plenty of sites, one or more DB2 address spaces are given a too-low priority in

the z/OS system’s WLM policy

 Result is degraded throughput for DB2-accessing applications

▪First, IRLM should be assigned to the super-high-priority SYSSTC service class

 When IRLM has work to do, it needs a processor right away; otherwise, lock acquisition and

release is delayed

 IRLM uses very little CPU, so no worries about it getting in the way of other address spaces if it

has a higher priority than those other address spaces

▪Should any other DB2 address spaces be assigned to SYSSTC?

 I say, “No” – remember what “Syndrome” said in “The Incredibles?”

23

“When everyone is
super, no one will be”

© 2017 IBM Corporation24

Prioritizing DB2 address spaces other than IRLM

▪DIST and any stored procedure address spaces should have the same priority as

MSTR and DBM1, and that should be below SYSSTC but a little higher than CICS

AORs (or IMS message regions)

 Some people give these DB2 address spaces a priority below CICS AORs, fearing that the DB2

address spaces will block CICS access to processors

• In fact, if DB2 tasks wait behind CICS tasks for processor time, CICS-DB2 transaction performance will

suffer (CICS monitor will show higher “wait for DB2” times)

 Some people give the DIST address space (DDF) a lower priority than other DB2 address

spaces, fearing that a higher priority will be too high for SQL coming through DDF

• In fact, the priority of the DIST address space applies only to the DDF system tasks, and these use very

little CPU

• The priority of SQL statements coming through DDF depends on the service class (or classes) to which

DDF-using applications are mapped in the WLM policy – if they are not mapped to a service class, they

get discretionary priority by default

24

Very low

© 2017 IBM Corporation25

Prioritizing DB2 address spaces other than IRLM (cont’d)

▪At some sites, DB2 stored procedure address spaces are given a lower priority

than other DB2 address spaces, because people don’t want DB2 stored

procedures executing at a too-high priority

 In fact, the priority at which a DB2 stored procedure executes is inherited from the process that

calls the stored procedure

 If a stored procedure address space has a too-low priority, that can result in delays in

scheduling called stored procedure for execution (that, in turn, negatively impacts the

performance of the callers of stored procedures)

 Note: native SQL procedures, like external stored procedures, run at the priority of the calling

process, but they execute in DBM1 under the caller’s task

25

© 2017 IBM Corporation26

DB2-managed archiving vs. system-time temporal

▪Some people get DB2-managed archiving (introduced with DB2 11) and system-

time temporal support (DB2 10) mixed up

▪That’s understandable – both are forms of archiving, if what you mean by

“archiving” is long-term retention of historical data

 With system-time temporal, base table has an associated history table, and history table holds

“before” image of rows that were made non-current via UPDATE and DELETE operations

• Implemented to enable viewing of data in a “current as of (some date)” fashion

 With DB2-managed archiving, base table has an associated archive table, and archive table holds

rows that are current (i.e., still in effect) but relatively old and relatively infrequently accessed

• Implemented to improve performance of retrieval of “newer” rows

 For both features, DB2 can make the base and “adjunct” tables appear to programs to be one

logical table

26

© 2017 IBM Corporation27

The IBM Data Server Driver vs. DB2 Connect

▪Some people think that DB2 Connect gateway servers are the way to go

▪Those people may think that way because they don’t know about a better

alternative: the IBM Data Server Driver

 Simplified IT infrastructure, better performance

• Eliminates a “hop” between application server and DB2 for z/OS, as IBM Data Server Driver is of the

“type 4” variety – straight to DB2 from the app server

 Lighter weight client, easier to configure and upgrade versus DB2 Connect

▪How can you get the IBM Data Server Driver?

 Easy: if you’re licensed for DB2 Connect, you are entitled to use the Data Server Driver

• Exception: DB2 Connect concurrent user license requires use of DB2 Connect gateway server

27

IBM Data
Server Driver

© 2017 IBM Corporation28

A little more on the IBM Data Server Driver

▪Functionality-wise, just about everything in DB2 Connect is also provided by the

IBM Data Server Driver – for example:

 Connection pooling

 Transaction pooling

 Sysplex workload balancing

 Drivers for lots of languages (not just Java and C# .NET, but others, too, including Perl, Python,

PHP, Ruby…)

▪About the only exception of which I’m aware: if an application requires 2-phase

commit capability and the application server uses a dual-transport processing

model, DB2 Connect is needed (DB2 12 should eliminate that requirement)

 Note: WebSphere Application Server uses a single-transport processing model

28

© 2017 IBM Corporation29

DB2 Connect versus z/OS Connect

▪Some people are unclear as to the difference between DB2 Connect (and the IBM

Data Server Driver) and z/OS Connect

▪DB2 Connect (and the Data Server Driver) continue to do what they have long done:

 They enable applications to access DB2 for z/OS data over a network connection, using industry-

standard relational database interfaces such as JDBC and ODBC

• In other words, they enable these applications to be DRDA requesters

▪z/OS Connect, newer on the scene, allows client applications to invoke z/OS-based

services in the form of APIs

 The services could be DB2 SQL statements and stored procedures, CICS transactions, IMS

transactions, WebSphere Application Server for z/OS transactions, or batch jobs

 The z/OS-based services are invoked by clients using REST calls (i.e., they are RESTful

services), and data payloads are in JSON format

29

© 2017 IBM Corporation30

A little more on z/OS Connect and DB2 for z/OS

▪DB2 12 delivered a native REST interface, and that capability was retrofitted to

DB2 11 via the fix for APAR PI66828

▪A client program can interact directly with DB2’s REST interface, or requests for

DB2 data services can go through z/OS Connect

 Either way, DB2’s REST interface is used

30

CICS

IMS

WebSphere

DB2

z/OS Connect

API

APIAPI

© 2017 IBM Corporation31

Thanks for your time

Robert Catterall

rfcatter@us.ibm.com

