
New Frontiers in Leveraging
z/OS Real Storage for Optimal
Db2 Performance

Tridex

September 23, 2021

Robert Catterall, IBM
Senior Consulting Db2 for z/OS Specialist

© 2021 IBM Corporation

Introduction

2

• The mainframe memory scene, in a Db2 for z/OS context, is different than
it was just a few years ago
o z/OS LPAR real storage sizes are getting to be much larger – over 100 GB of real

storage is not unusual, several hundred GB is increasingly common
o Db2 for z/OS keeps giving us new ways to leverage z/OS real storage for

improved application performance and CPU efficiency
- Recent versions of Db2 have introduced buffer pools backed by large real

storage page frames, contiguous buffer pools, high-performance DBATs, a
much bigger sort tree, greater use of sparse indexes, and more

• My aim: help you use mainframe memory, and memory-leveraging Db2
features and functions, as effectively as possible

Agenda

3

• Assessing the real storage situation for a z/OS LPAR
• Buffer pools – your single biggest memory-related leverage point
• Other ways to exploit real storage to enhance Db2 performance

4

Assessing the real storage
situation for a z/OS LPAR

How much memory should a z/OS LPAR have?

5

• If it is an LPAR in which a production Db2 subsystem runs, I would say that
it should have at least 20 GB of real storage per engine
o And by “per engine,” I’m talking about general-purpose and zIIP engines

• This is a rule of thumb I have developed based on years of reviewing the
performance of Db2 for z/OS systems
o Objective: configuration with processing capacity and memory in balance
o I have observed in recent years that at many sites, z/OS real storage increases

did not keep pace with processing capacity increases
- If too little memory, performance potential of processors not fully realized

• Note that z/OS supports up to 4 TB of memory for an LPAR
o Largest real storage size I’ve seen for an LPAR with my own eyes: 1.1 TB

Balancing processing capacity and memory

6

• To see how many engines a z/OS LPAR has, check an RMF CPU Activity report

-----------------------DISTRIBUTION OF IN-READY WORK UNIT QUEUE--------------
NUMBER OF 0 10 20 30 40 50 60 70 80 90 100
WORK UNITS (%) |....|....|....|....|....|....|....|....|....|....|

<= N 55.9 >>>>>>>>>>>>>>>>>>>>>>>>>>>>
= N + 1 3.5 >>
= N + 2 3.1 >>
= N + 3 3.5 >>

<= N + 5 5.5 >>>
<= N + 10 10.9 >>>>>>
<= N + 15 5.7 >>>
<= N + 20 4.2 >>>
<= N + 30 3.1 >>
<= N + 40 1.5 >
<= N + 60 1.3 >
<= N + 80 0.4 >
<= N + 100 0.2 >
<= N + 120 0.1 >
<= N + 150 0.2 >
> N + 150 0.2 >

N = NUMBER OF PROCESSORS ONLINE UNPARKED (16.8 ON AVG)

N is “number of places to which work
can be dispatched”
• If zIIPs running in SMT2 mode, N

value counts each zIIP engine
twice – I recommend adjusting to
reflect number of physical zIIP
engines (3 – see next slide)

• A fractional part of N (0.8, in this
case) indicates that one or more
engines are “parked” to some
degree (see next slide) – round to
nearest whole number

• I’d say that this LPAR should have
at least 280 GB of real storage: 20
GB X 14 engines (round N up to
17, subtract 3 to account for
SMT2 double-counting of zIIP
engines – next slide)

More about RMF’s “N” number of engines

7

• Information below is from same report as information on previous slide

---CPU--- ---------------- TIME % ----------------
NUM TYPE ONLINE LPAR BUSY MVS BUSY PARKED
0 CP 100.00 87.03 86.85 0.00
1 CP 100.00 77.76 77.68 0.00
2 CP 100.00 83.88 83.78 0.00
3 CP 100.00 87.07 86.91 0.00
4 CP 100.00 76.23 76.14 0.00
5 CP 100.00 76.79 76.71 0.00
6 CP 100.00 80.45 80.35 0.00
7 CP 100.00 73.29 73.24 0.00
8 CP 100.00 63.83 69.22 0.00
9 CP 100.00 57.78 62.95 0.00
A CP 100.00 35.28 48.33 17.01

TOTAL/AVERAGE 72.67 75.16
12 IIP 100.00 66.63 58.68 0.00

46.30 0.00
13 IIP 100.00 26.70 23.42 0.00

18.24 0.00
14 IIP 100.00 9.21 8.07 0.00

6.42 0.00
3E IIP 100.00 0.00 ----- 100.00

----- 100.00
TOTAL/AVERAGE 25.64 26.86

10.8 general-purpose engines – 0.8 part reflects fact
that CPU A is 17% parked from perspective of this
LPAR, meaning that LPAR has access to 80% of the
engine’s processing capacity (round 17% up to 20%)

3 zIIP engines (engine 3E is 100% parked for LPAR)
• 3 zIIP engines are running in SMT2 mode (indicated

by fact that each engine has 2 values in MVS BUSY
column), so they count as 6 “places where work can
be dispatched”

• That’s why N = 16.8 on previous slide: 10.8 general-
purpose engines (they always run in ”uni-thread”
mode), and 6 zIIP ”places to dispatch work”

• “At least 20 GB of memory per engine” refers to
engine “cores,” so I use 3 as number of zIIPs, not 6

Recommended minimum memory amount is (10.8 + 3)
= 13.8, round that to 14, times 20 GB, equals 280 GB

Whatever amount of memory an LPAR has…

8

• …how much can you use?
• Don’t want too much pressure on LPAR’s real storage resource
• Here is my rule of thumb regarding real storage usage: go ahead and use

more to boost Db2 for z/OS performance, as long as LPAR’s demand
paging rate doesn’t get out of hand
o That’s the rate, per second, at which pages that z/OS moved from real to

auxiliary storage are brought back into real storage on demand
o If demand paging rate is less than 1 per second, it’s not out of hand
- Very small but non-zero paging rate is NOT something that would concern me

o I would not want demand paging rate to go beyond 2-3 per second
- If it’s at that level, I’d add more memory before using more memory

Where can I find LPAR’s demand paging rate?

9

• Check RMF Summary report for the LPAR

NUMBER OF INTERVALS 4 TOTAL LENGTH OF INTERVALS 00.59.58
-DATE TIME INT CPU DASD DASD TAPE JOB JOB TSO TSO STC STC ASCH ASCH OMVS OMVS SWAP DEMAND
MM/DD HH.MM.SS MM.SS BUSY RESP RATE RATE MAX AVE MAX AVE MAX AVE MAX AVE MAX AVE RATE PAGING
11/03 09.15.00 15.00 51.5 0.4 35515 36.5 83 72 96 92 371 365 0 0 11 6 0.00 0.00
11/03 09.30.00 14.59 51.8 0.4 34656 81.8 85 68 98 95 369 362 1 0 11 5 0.00 0.00
11/03 09.45.00 15.00 49.4 0.4 34461 70.7 75 68 95 92 363 359 0 0 12 4 0.00 0.00
11/03 10.00.00 14.59 52.1 0.4 39537 288.0 82 70 94 91 365 358 0 0 15 4 0.00 0.00

-TOTAL/AVERAGE 51.2 0.4 36042 119.3 85 69 98 93 371 361 1 0 15 5 0.00 0.00

“No pressure on storage here!”

10

Buffer pools – your single biggest
memory-related leverage point

The most important buffer pool metric

11

• Total read I/O rate
o All synchronous + all prefetch reads for

pool, per second
- 3 categories of prefetch read:

sequential, list and dynamic
o Once source of numbers: Db2 monitor

statistics long report
- Depending on monitor, may be called

statistics detail report

BP3 READ OPERATIONS QUANTITY /SECOND
--------------------------- -------- -------
SYNCHRONOUS READS 1676.1K 465.56
SYNCHRON. READS-SEQUENTIAL 375.00 0.10
SYNCHRON. READS-RANDOM 1675.7K 465.45
GETPAGE PER SYN.READ-RANDOM 18.36
SEQUENTIAL PREFETCH REQUEST 56125.00 15.59
SEQUENTIAL PREFETCH READS 9912.00 2.75
PAGES READ VIA SEQ.PREFETCH 9912.00 2.75
S.PRF.PAGES READ/S.PRF.READ 1.00
LIST PREFETCH REQUESTS 4309.00 1.20
LIST PREFETCH READS 191.00 0.05
PAGES READ VIA LIST PREFTCH 2370.00 0.66
L.PRF.PAGES READ/L.PRF.READ 12.41
DYNAMIC PREFETCH REQUESTED 179.9K 49.96
DYNAMIC PREFETCH READS 26440.00 7.34

For this buffer pool, total read I/O rate is
465.56 + 2.75 + 0.05 + 7.34 = 475.7/second

Can also get numbers via Db2 command

12

• -DISPLAY BUFFERPOOL(ACTIVE) DETAIL
o Issue command, wait one hour, then issue

command again
o In output of second issuance of command,

divide counters by 3600 to get per-second
figures
- Note: in command output, synchronous

reads are in two categories: random (R)
and sequential (S) – add these two
numbers to get total synchronous reads

DSNB401I -DBP1 BUFFERPOOL NAME BP2

SYNC READ I/O (R) =31107574
SEQ. GETPAGE =133932496
SYNC READ I/O (S) =664918
SYNC READ I/O (ZHL) =0
DMTH HIT =0
PAGE-INS REQUIRED =0
SEQUENTIAL =1110191
VPSEQT HIT =822222
RECLASSIFY =14131538

DSNB412I -PROD SEQUENTIAL PREFETCH -
REQUESTS =650334
PREFETCH I/O =385115
PAGES READ =20531190

DSNB413I -PROD LIST PREFETCH -
REQUESTS =1641349
PREFETCH I/O =160339
PAGES READ =1527361

DSNB414I -PROD DYNAMIC PREFETCH -
REQUESTS =10229380
PREFETCH I/O =2917561

For this buffer pool, total read I/O rate is (31,107,574
+ 664,918 + 385,115 + 160,339 + 2,917,561) divided by
3600, which is 9787/second

Your primary aim in buffer pool tuning

13

• Drive total read I/O rates as low as you can by enlarging pools with higher
read I/O rates – but don’t over-burden system memory
o Remember: ideal is demand paging rate that is less than 1 per second

• Reducing read I/Os will improve response time (less I/O wait time) and
save CPU (every I/O consumes some CPU time)

Lower read I/O rate

Measuring results of buffer pool tuning

14

• Use Db2 monitor accounting long reports (may be called accounting detail
reports) generated before and after buffer pool change
o Reports should cover same time period of same day of week (i.e., 9-10 AM,

Monday)
o I like report data to be aggregated at connection type level
- Depending on monitor, may involve telling monitor to “order” or ”group” data

by connection type
- One report section shows CICS-Db2 activity, another shows DDF activity, etc.

o Look for reductions in these “average” values: synchronous database read wait
time, “other” read wait time (prefetch read) and class 2 (i.e., in-Db2) CPU time
(“average” is generally per transaction or per batch job, depending on workload)

Driving down buffer pool read I/O rates

15

• Generally want to focus on pools with highest read I/O rates
o If you have any buffer pools with read I/O rates > 1000/second, maybe try to get

those below 1000/second
o Some organizations that super-size buffer pools are aiming for read I/O rates <

100/second, or even < 10/second for each pool

• Some data points:
o Highest total read I/O rate I have seen for a buffer pool: 12,144 per second

(average over a 1-hour period)
o Largest buffer pool configuration I have seen for a Db2 subsystem (aggregate

size of all pools): 879 GB
- This on an LPAR with 1104 GB of real storage – demand paging rate was zero

o Largest individual buffer pool I have seen: 297 GB

If Db2 subsystem part of a data sharing group…

16

• …don’t forget about group buffer pools (GBPs)
• Enlarging buffer pool BP2 (for example) for members of data sharing group

may necessitate enlarging GBP2 in coupling facility
• If local buffer pools too large relative to group buffer pool, could see

directory entry reclaims for GBP – a drag on performance
o If GBP is way undersized relative to associated local buffer pools, could even see

GBP write failures due to lack of storage – that could lead to pages going on
logical page list (LPL), perhaps causing program failures

o Can check on directory reclaims and write failures due to lack of storage using
output of this command:

-DISPLAY GROUPBUFFERPOOL(*) TYPE(GCONN) GDETAIL(INTERVAL)

Buffer pool tuning not just about pool size

17

• Recommendation: use large real storage page frames to back any pool
that has a GETPAGE rate > 1000 per second
o A measure of buffer pool activity – a GETPAGE is a Db2 request to access a page
- Get GETPAGE rate from Db2 monitor statistics long report, or from output of

-DISPLAY BUFFERPOOL(ACTIVE) DETAIL (add figures for random and
sequential GETPAGEs)

o Large page frames save CPU by making translation of virtual storage addresses
to real storage addresses more CPU-efficient

o To be backed by large page frames, buffer pool must be page-fixed in memory –
done via -ALTER BUFFERPOOL with PGFIX(YES)

o Also need to request large frames for pool via -ALTER BUFFERPOOL with
FRAMESIZE(1M) or FRAMESIZE(2G), for 1 MB or 2 GB frames, respectively

More on large page frames

18

• For existing pool, change from PGFIX(NO) to PGFIX(YES) happens when
pool is subsequently deallocated and reallocated (usually as consequence
of stopping and restarting Db2 subsystem)
o Same is true for change in pool’s frame size

• To verify that pool is backed by large page frames, look at output of -
DISPLAY BUFFERPOOL(ACTIVE) DETAIL

DSNB401I -DBP1 BUFFERPOOL NAME BP2
DSNB402I -DBP1 BUFFER POOL SIZE = 3700000 BUFFERS
DSNB546I -DBP1 PREFERRED FRAME SIZE 2G

3670016 BUFFERS USING 2G FRAME SIZE ALLOCATED
DSNB546I -DBP1 PREFERRED FRAME SIZE 2G

29984 BUFFERS USING 1M FRAME SIZE ALLOCATED

Pool is defined with FRAMESIZE(2G)

524,288 buffers of 4 KB each will fill one 2 GB frame
– “left over” buffers will be backed by 1 MB frames

If pool has preferred frame size of 2G or 1M and command output shows that some buffers not backed by
large frames, it means system does not have enough large frames to fully back pool – can be addressed by
changing value of LFAREA parameter in IEASYSxx member of system’s SYS1.PARMLIB data set

New with Db2 12: contiguous buffer pools

19

• A contiguous buffer pool is one defined in a Db2 12 system with a
specification of PGSTEAL(NONE)
o PGSTEAL(NONE) means buffer stealing not expected to occur for pool, because it

has enough buffers to hold all pages of all assigned objects

• At first access of object assigned to PGSTEAL(NONE) pool, requested
page(s) brought into memory immediately, and then all the rest of object’s
pages will be asynchronously read into pool
o Not only that, but pages will be arranged in memory as they are on disk (thus the

term “contiguous”) – result is more CPU-efficient page access

• Note: 2 GB page frames will not be used for PGSTEAL(NONE) buffer pool –
if you want pool to be backed by large frames, specify FRAMESIZE(1M)

More on Db2 12 contiguous buffer pools

20

• Even for PGSTEAL(NONE) pool, buffer stealing will occur if necessary (i.e.,
if pool full and page needs to be brought into pool)
• To allow for buffer stealing while maintaining “contiguous-ness,” part of

pool designated as steal area – any required buffer stealing happens
there, and pages in contiguous area will not be disturbed
o Buffers in steal area managed using FIFO (first in, first out) steal algorithm
o Size of steal area will be 10% of pool, though not more than 6400 buffers and

not less than 50 buffers

• For max CPU efficiency benefit of contiguous pool, want pool’s steal area
to be empty (i.e., all pages fit in contiguous part of pool)
o So, if PGSTEAL(NONE) pool has 50,000 buffers, want total pages of objects

assigned pool to be <= 45,000

21

Other ways to exploit real storage
to enhance Db2 performance

RELEASE(DEALLOCATE) packages

22

• For package bound with RELEASE(DEALLOCATE), the package and any
table space-level (or partition-level) locks acquired in executing package
will remain allocated to thread, until thread deallocated
o Versus package, table space locks being released from thread at commit

• When RELEASE(DEALLOCATE) package executed with persistent thread
(persists through commits), can get significant CPU savings from retaining
the package and table space locks for life of thread
o Eliminate cost of releasing, reacquiring package and associated table space

locks after each commit

• Memory angle: when RELEASE(DEALLOCATE) packages executed via
persistent threads, more virtual and real storage used for threads

More on RELEASE(DEALLOCATE)

23

• Examples of persistent threads: CICS-Db2 protected entry threads, high-
performance DBATs, and threads used by batch jobs
• For transactional applications, best use of RELEASE(DEALLOCATE) is for

packages executed frequently and via persistent threads
o CPU efficiency benefit tends to be greater for packages that have very low in-

Db2 CPU time per execution (e.g., less than 10 ms)

• RELEASE(DEALLOCATE) package can also deliver performance benefit for
batch job that issues many commits
• Note: “regular” DBAT becomes a high-performance DBAT when used to

execute RELEASE(DEALLOCATE) package and when PKGREL = BNDOPT
for DDF (versus PKGREL = COMMIT)
o To check PKGREL setting, issue -DISPLAY DDF DETAIL

And a bit more…

24

• One way to get high-performance DBATs: bind IBM Data Server Driver /
Db2 Connect packages with RELEASE(DEALLOCATE)
o Do not bind those packages with RELEASE(DEALLOCATE) in default NULLID

collection – that would make all DBATs high-performance by default
- Instead, BIND COPY NULLID packages with RELEASE(DEALLOCATE) into

alternate collection and point selected DDF-using applications to alternate
collection using Db2 profiles tables, as described in this blog entry:

http://robertsdb2blog.blogspot.com/2018/07/db2-for-zos-using-profile-tables-to.html

• Historically, combination of RELEASE(DEALLOCATE) packages and
persistent threads could interfere with package rebind actions
o RELEASE(DEALLOCATE) “break in” feature of Db2 11 helped with that
o The rebind phase-in feature of Db2 12 function level 505 helps even more

http://robertsdb2blog.blogspot.com/2018/07/db2-for-zos-using-profile-tables-to.html

Db2 12 index fast traverse blocks (FTBs)

25

• As table grows, indexes defined on table go to additional levels
• Each level added to index adds a GETPAGE to every index “probe”
• More GETPAGEs lead to increased CPU cost of query execution

Accessing table
row via 5-level
index requires 6
GETPAGEs – 5 of
which are index-
related

How FTBs improve CPU efficiency

26

• Db2 12 can build FTB structures for certain indexes
(function level 508 + PH30978: non-unique OK)

• How an FTB improves CPU efficiency:
o Suppose query has “equals” predicate that matches an

index for which an FTB structure has been built by Db2
o Db2 can go to FTB with value specified in predicate, and

FTB identifies index leaf page in which value is located
o So, for 5-level index, instead of needing 6 GETPAGEs to

access data row (5 index, 1 table space), now only need
2 GETPAGEs (1 for index leaf page, 1 for table space)

• Default: amount of DBM1 space that can be used for
FTBs limited to 20% of buffer pool configuration size
o If 40 GB buffer pool configuration, max FTB space = 8 GB

Important information in “News from the Lab” blog post from October, 2020

https://community.ibm.com/community/user/hybriddatamanagement/blogs/paul-mcwilliams1/2020/10/08/new-look-ftb-db2-12

Dynamic statement caching

27

• Global statement cache has been above 2 GB bar in DBM1 address space
since Db2 V8
o Size determined by ZPARM parameter EDMSTMTC

• Larger statement cache = more cache “hits”
o CPU savings achieved through resulting avoidance of full PREPAREs

• I regularly see dynamic statement cache hit ratios of 95% or higher – aim
for that on your system (can check on dynamic statement cache hit rate
with Db2 monitor statistics long report)

The EDM pool: package and DBD caches

28

EDM POOL QUANTITY /SECOND
--------------------------- -------- -------
PAGES IN DBD POOL (ABOVE) 150.0K N/A

FREE PAGES 49076.25 N/A
FAILS DUE TO DBD POOL FULL 0.00 0.00

PAGES IN SKEL POOL (ABOVE) 200.0K N/A
FREE PAGES 75860.15 N/A

FAILS DUE TO SKEL POOL FULL 0.00 0.00

DBD REQUESTS 11264.9K 3182.17
DBD NOT FOUND 12.00 0.00
DBD HIT RATIO (%) 100.00 N/A
PT REQUESTS 39556.5K 11.2K
PT NOT FOUND 107.00 0.03
PT HIT RATIO (%) 100.00 N/A

From Db2 monitor
statistics detail report
(or online display)

Definitely
want zeroes
here

• For both DBD cache and package cache, you want REALLY high ratio of “requests”
to “not found” – like thousands to one (“not found” requires read from directory)

• If that ratio is not really high for one of these caches, make the cache larger (in
ZPARM, it’s EDMDBDC for DBD cache, and EDM_SKELETON_POOL)

Data sets: are you hitting the DSMAX limit?

29

• A DSMAX value set years ago may be too small today
o Result can be a high rate of physical closure of Db2 data sets
- Not good – data set physical open/close operations are relatively expensive

o If you see (in a Db2 monitor statistics report) a lot of data set close activity due
to the DSMAX threshold being reached, increase DSMAX
- 200,000 is max value, but practical limit probably less due to below-the-bar

DBM1 virtual storage consumption – up to 70,000 probably OK in most cases
- Don’t go overboard – good value is just large enough to make rate of data set

close actions due to threshold reached either zero or very small
OPEN/CLOSE ACTIVITY QUANTITY /SECOND
--------------------------- -------- -------
OPEN DATASETS - HWM 13698.00 N/A
OPEN DATASETS 13313.75 N/A

DSETS CLOSED-THRESH.REACHED 0.00 0.00

• Zero is good
• A few per hour is OK
• Several per minute

not so good

MXDTCACH

30

• In executing query, Db2 can build sparse index on data materialized in
work file – improves efficiency for repeated access to that data
• MXDTCACH parameter in ZPARM specifies amount of memory that can be

used for sparse index for a given process (default is 20 MB)
• In Db2 monitor statistics long report:

MISCELLANEOUS AVERAGE TOTAL
------------------- -------- --------
SPARSE IX BUILT WF 0.36 8

Number of times sparse index was built in work file, because not enough space to build it in memory
• If non-zero and you have memory to spare, consider making MXDTCACH larger (e.g., 30 MB or

40 MB) to allow more sparse indexes to be built entirely in memory (boosts CPU efficiency of
query execution)

Sort pool

31

• Space in DBM1 (above the 2 GB bar since Db2 V8) that is used for SQL-
related sorts (as opposed to utility sorts)
• The larger the sort pool, the more CPU-efficient SQL sorting can be

o Size determined by ZPARM parameter SRTPOOL
o Note that this is the maximum size of the sort work area that Db2 will allocate for

each concurrent sort user
- Default size of sort pool is 10 MB
- Max SRTPOOL value is 128 MB – largest I’ve seen is 48 MB
- Db2 12: sort tree has MANY more nodes than before, so larger SRTPOOL more

likely to increase level of in-memory sorting

32© 2021 IBM Corporation

Robert Catterall
rfcatter@us.ibm.com

