
IBM Cloud1

Advanced JSON: Understanding how to Exploit
Db2 Capabilities in the NoSQL World

—
George Baklarz
Db2 Digital Technical Engagement

IBM Cloud2

Legal Disclaimer

2

Copyright © IBM Corporation 2019 All rights reserved.

U.S. Government Users Restricted Rights - Use, duplication, or disclosure restricted by GSA ADP Schedule Contract with IBM Corporation

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO

VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON CURRENT THINKING REGARDING TRENDS AND

DIRECTIONS, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. FUNCTION DESCRIBED HEREIN MY NEVER BE DELIVERED BY IBM. IBM

SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY

OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY

WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY

AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR SOFTWARE.

IBM, the IBM logo, ibm.com and Db2 are trademarks or registered trademarks of International Business Machines Corporation in the United States, other

countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™),

these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also

be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark

information” at www.ibm.com/legal/copytrade.shtml

IBM Cloud3

Agenda

IBM Cloud4

Huh?

JSON Officially

� JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to parse and generate. It is based on a
subset of the JavaScript Programming Language, Standard ECMA-262 3rd Edition -
December 1999.

IBM Cloud5

Syntax

�A JSON Object begins and ends with braces { }

� Inside these braces you will find zero or more key-value pairs

� The key is used to identify the value

� The value is one of the following:

� JSON object

� JSON array

� JSON string

� JSON number

� JSON literal of true, false, or null

IBM Cloud6

 {

 "empno":"000070",

 "firstnme":"EVA",

 "midinit":"D",

 "lastname":"PULASKI",

 "workdept":"D21",

 "phoneno":[7831,1422,4567],

 "hiredate":"09/30/2005",

 "job":"MANAGER",

 "edlevel":16,

 "sex":"F",

 "birthdate":"05/26/2003",

 "pay":

 {

 "salary":96170.00,

 "bonus":700.00,

 "comm":2893.00

 }

 }

Array

Object or Structure

Key: Value pair

Simple

IBM Cloud7

{

 "company": "Dispatch Taxi Affiliation",

 "dropoff_census_tract": "17031832000",

 "dropoff_centroid_latitude": "41.946294536",

 "dropoff_centroid_location": {

 "coordinates": [

 -87.654298,

 41.946295

],

 "type": "Point"

 },

 "dropoff_centroid_longitude": "-87.654298084",

 "dropoff_community_area": "6",

 "extras": "1",

 "fare": "7.45",

 "payment_type": "Cash",

 "pickup_census_tract": "17031050600",

 "pickup_centroid_latitude": "41.950545696",

 "pickup_centroid_location": {

 "coordinates": [

 -87.676182,

 41.950546

],

 "type": "Point"

 },

 "pickup_centroid_longitude": "-87.676182496",

 "pickup_community_area": "5",

 "taxi_id": "a1ba72d70ad5fc9a30870b767736683ccfdb399…”,

 "tips": "0",

 "tolls": "0",

 "trip_end_timestamp": "2013-01-01T00:15:00.000",

 "trip_id": "01e9a03fd793670ed35ef7195eeb99775895611f",

 "trip_miles": "1.8",

 "trip_seconds": "480",

 "trip_start_timestamp": "2013-01-01T00:00:00.000",

 "trip_total": "8.45"

}

Complex

IBM Cloud8

https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html

XMLXMLXMLXML

JSONJSONJSONJSON

NoXML

� JSON has taken over the world. Today, when any two applications communicate with
each other across the internet, odds are they do so using JSON.

� Top ten web APIs (Google, Facebook, Twitter, etc…) all expose data in JSON rather than
XML. Twitter supported XML until 2013 and then dropped support in favor of using JSON
exclusively.

IBM Cloud9

https://www.alliedmarketresearch.com/NoSQL-market

https://itbrandpulse.com

NoSQL Market

IBM Cloud10

RDBMS vs NoSQL

10

<?xml version="1.0" encoding="UTF-16" ?>

<Instrument>

 <Id>I100</Id>

 <ProductType>VarianceSwap</ProductType>

 <ProductCurrency>GBP</ProductCurrency>

 <Quantity>10000.50</Quantity>

 <ExpiryDate>2018-03-31</ExpiryDate>

 <StrikePrice>75.35</StrikePrice>

 <ObservationSchedule>

 </Observation date="2018-01-01" time="AM">

 </Observation date="2018-02-01" time="AM">

 </Observation date="2018-03-01" time="AM">

 </Observation date="2018-03-31" time="PM">

 </ObservationSchedule>

</Instrument>

{

 "Id":"I100",

 "ProductType":"VarianceSwap",

 "ProductCurrency":"GBP",

 "Quantity":["10000.50"],

 "ExpiryDate":"2018-03-31",

 "StrikePrice":"75.35",

 "ObservationSchedule":[

 {"ObservationDate" : "2018-01-01","ObservationTime" : "AM"},

 {"ObservationDate" : "2018-02-01","ObservationTime" : "AM"},

 {"ObservationDate" : "2018-03-01","ObservationTime" : "AM"},

 {"ObservationDate" : "2018-03-31","ObservationTime" : "PM"}

]

}

ID PRODUCT_TYPE PRODUCT_CURRENCY QUANTITY EXPIRY_DATE STRIKE_PRICE

I100 VarianceSwap GBP 10000.50 2018-03-31 75.35

ID OBSERVATION_DATE OBSERVATION_TIME

I100 2018-01-01 AM

I100 2018-02-01 AM

I100 2018-03-01 AM

I100 2018-03-31 PM

XML

JSON

Relational

IBM Cloud11

RDBMS vs NoSQL

11

<?xml version="1.0" encoding="UTF-16" ?>

<Instrument>

 <Id>I100</Id>

 <ProductType>VarianceSwap</ProductType>

 <ProductCurrency>GBP</ProductCurrency>

 <Quantity>10000.50</Quantity>

 <Quantities>

 <Quantity>10000.50</Quantity>

 <Quantity>50000.00</Quantity>

 <Quantities>

 <ExpiryDate>2018-03-31</ExpiryDate>

 <StrikePrice>75.35</StrikePrice>

 <ObservationSchedule>

 </Observation date="2018-01-01" time="AM">

 </Observation date="2018-02-01" time="AM">

 </Observation date="2018-03-01" time="AM">

 </Observation date="2018-03-31" time="PM">

 </ObservationSchedule>

</Instrument>

{

"Id":"I100",

"ProductType":"VarianceSwap",

"ProductCurrency":"GBP",

"Quantity":["10000.50","50000.00"],

"ExpiryDate":"2018-03-31",

"StrikePrice":"75.35",

"ObservationSchedule":[

{"ObservationDate" : "2018-01-01","ObservationTime" : "AM"},

{"ObservationDate" : "2018-02-01","ObservationTime" : "AM"},

{"ObservationDate" : "2018-03-01","ObservationTime" : "AM"},

{"ObservationDate" : "2018-03-31","ObservationTime" : "PM"}

]

}

ID PRODUCT_TYPE PRODUCT_CURRENCY QUANTITY EXPIRY_DATE STRIKE_PRICE

I100 VarianceSwap GBP 10000.50 2018-03-31 75.35

ID OBSERVATION_DATE OBSERVATION_TIME

I100 2018-01-01 AM

I100 2018-02-01 AM

I100 2018-03-01 AM

I100 2018-03-31 PM

ID QUANTITY

I100 10000.50

I100 50000.00

XML

JSON

Relational

IBM Cloud12

Publishing Functions Comments

JSON_ARRAY Creates JSON array from input key value pairs

JSON_OBJECT Creates JSON object from input key value pairs

Retrieval Functions Comments

JSON_QUERY Extract a JSON object from a JSON object

JSON_VALUE Extract an SQL scalar value from a JSON object

JSON_EXISTS Determines whether or not a value exists in a document

JSON_TABLE Creates relational output from a JSON object

Conversion Function Comments

BSON_TO_JSON Convert BSON formatted document into JSON strings

JSON_TO_BSON Convert JSON strings into a BSON document format

New ISO JSON SQL Functions

These lists of functions are all part of the SYSIBM schema, so a user does not require permissions

in order to use them for development or general usage

IBM Cloud13

JSON Storage and
Path Expressions
JSON_TO_BSON

BSON_TO_JSON

IBM Cloud14

Storage

�You choose the format: JSON or BSON

� There is no "native" JSON data type and one is not specified by the standard

�You choose the table organization: row or column (where supported)

�You choose the column data type:

• By default, Db2 will assume character data types are JSON and binary ones are BSON

� Try to "inline" the columns if possible to provide better performance

CREATE TABLE T1 (C1 VARCHAR(300))

CREATE TABLE T1 (C1 BLOB(512) INLINE LENGTH 512)

IBM Cloud15

Insert

�Normal SQL mechanisms are used to load JSON (or BSON) data into tables

 INSERT INTO T1 VALUES (
 '{ "id": "0001", "type": "donut", "name": "Cake",

 "ppu": 0.55,

 "topping": [

 { "id": "5001", "type": "None" },

 { "id": "5002", "type": "Glazed" },

 { "id": "5005", "type": "Sugar" }]

 }')

�Complimentary (but optional) conversion functions are provided to move between JSON
and BSON if so desired although you can also use other products to do this

 SYSIBM.BSON_TO_JSON

 SYSIBM.JSON_TO_BSON

IBM Cloud16

Performance Considerations

�Using JSON_TO_BSON will add additional overhead to the INSERT process

�BSON format may take less space (5%) but Db2 compression helps too

Details: CUSTOMER document data set was used which

includes 20,000 customer documents in JSON format with

details on individual customers including an array of product

purchases. The JSON column is defined as VARCHAR(2000),

while the BSON column is defined as VARBINARY(2000) to

avoid the additional overhead of dealing with BLOB objects.

Disclaimer: All of the examples in this presentation are

using generated data and are run in a controlled
environment. The performance achieved may not be

indicative of your compute environment and you are
encouraged to test these examples yourself.

Disclaimer: All of the examples in this presentation are using generated data and are run in a controlled environment. The

performance achieved may not be indicative of your compute environment and you are encouraged to test these examples yourself.

IBM Cloud17

JSON Document Structure

� JSON documents have an inherent structure to them

� Many of the JSON functions provided with Db2 need a method to navigate through a document
to retrieve the object or item that the user wants

� To illustrate how a JSON path expression points to a particular object, one of the records
of the customer document is shown:

 {

 "customerid": 100000,

 "identity":

 {

 "firstname": "Jacob", "lastname": "Hines", "birthdate": "1982-09-18"

 },

 "contact":

 {

 "street": "Main Street North",

 "city": "Amherst", "state": "OH", "zipcode": "44001",

 "email": "Ja.Hines@yahii.com",

 "phone": "813-689-8309"

 },

 "payment":

 {

 "card_type": "MCCD", "card_no": "4742-3005-2829-9227"

 },

 "purchases":

 [

 {

 "tx_date": "2018-02-14",

 "tx_no": 157972,

 "product_id": 1860,

 "product": "Ugliest Snow Blower",

 "quantity": 1,

 "item_cost": 51.86

 }, ... additional purchases ...

]

 }

DocumentDocument

customeridcustomerid identityidentity

firstnamefirstname

lastnamelastname

birthdatebirthdate

contactcontact

streetstreet

citycity

statestate

zipcodezipcode

emailemail

phonephone

paymentpayment

card_typecard_type

card_nocard_no

purchases*purchases*

tx_datetx_date

tx_notx_no

product_idproduct_id

productproduct

quantityquantity

item_costitem_cost

IBM Cloud18

JSON Path Expression

� Every JSON path expression begins with a dollar sign ($) to represent the root or top of
the document structure

� To traverse down the document, the dot/period (.) is used to move down one level

� The asterisk (*) represents all values that are found in the object

� The dollar sign and period are reserved characters for the purposes of path expressions

� The LAX and STRICT modifiers are used to control the matching behavior of the JSON
path evaluation

IBM Cloud19

JSON Path Examples

� To retrieve the value associated with the identity key, the path expression would be:
$.identity

� The value referred to in this last example is the entire JSON object that is the value
associated with identity so the following object would be returned:

{

 "firstname": "Jacob",

 "lastname" : "Hines",

 "birthdate": "1982-09-18"

}

� If we needed to traverse the interior of the JSON OBJECT value associated with identity,
for example to refer to the birthdate, then we would append the initial key name with a
period and the internal key name for the value of interest

$.identity.birthdate

 ➡ "1982-09-18"

IBM Cloud20

JSON Path Examples

� To reference the first element of an array, you would append an array specifier (square
brackets []) with the element number inside

� The first element of a JSON array always begins with zero

� To refer to the first purchase made by the customer, we would use this path:
$.purchases[0]

 ➡ {

 "tx_date": "2018-02-14",

 "tx_no": 157972,

 "product_id": 1860,

 "product": "Ugliest Snow Blower",

 "quantity": 1,

 "item_cost": 51.86

 }

� To retrieve the product name of the first purchase we would add the key product
$.purchases[0].product

 ➡ "Ugliest Snow Blower"

IBM Cloud21

LAX versus STRICT Path Expressions

� The beginning of every JSON path expression can contain one of two search modifiers:
LAX and STRICT

� The search behavior can be explicitly modified using the LAX or STRICT keyword before
the JSON path:

strict $.stores[2].phone[1]

� The default mode is LAX for all Db2 JSON functions except for JSON_TABLE

� The LAX behavior is the tolerant one which will ignore structural differences between the
path provided and the actual JSON document layout

− The path specifies keys or levels that do not exist in the JSON document

− A missing object or element

− Accessing an array without specifying the index value

�When these types of errors occur, the output of the function under the default LAX
modifier will be to return a NULL value rather than an error

IBM Cloud22

Object

Not found

LAX
ON EMPTY

STRICT
ON ERROR

Array
No index

LAX
ON EMPTY

STRICT
ON ERROR

Index not
Found

LAX
ON EMPTY

STRICT
ON ERROR

Found

Found

Default LAX and STRICT Behavior on Errors

Null returned
by default

IBM Cloud23

JSON Conversion Functions

� If you decide to store the data in binary format, you must use the JSON_TO_BSON
function to convert the JSON into the proper format

�You also have the option of using an external BSON library to convert the string and
insert the value directly into the column (i.e. Db2 is not involved in the conversion)

�Documents are checked for validity (proper JSON) when using the
JSON_TO_BSON function

�Documents that are stored as character strings are NOT checked for validity until it is
used in a JSON function

IBM Cloud24

JSON Validation

� The following example generates an error on an invalid JSON document.
VALUES JSON_TO_BSON('{"name": George}')

➡ SQL16402N JSON data is not valid. SQLSTATE=22032 SQLCODE=-16402

� The JSON_TO_BSON or JSON_EXISTS functions can be used to check the structure of
the JSON document to ensure it is in the proper format

CREATE OR REPLACE FUNCTION CHECK_JSON(JSON CLOB)

 RETURNS INTEGER

 CONTAINS SQL LANGUAGE SQL DETERMINISTIC NO EXTERNAL ACTION

BEGIN

 DECLARE RC BOOLEAN;

 DECLARE EXIT HANDLER FOR SQLEXCEPTION RETURN(FALSE);

 SET RC = JSON_EXISTS(JSON,'$' ERROR ON ERROR);

 RETURN(TRUE);

END

� Example
VALUES CHECK_JSON('{"name": George}')

➡ False

IBM Cloud25

Retrieving JSON Objects

JSON_EXISTS

JSON_VALUE

JSON_QUERY

JSON_TABLE

IBM Cloud26

JSON Expression

� The JSON expression refers to either:

− a column name in a table where the JSON document is stored (either in JSON or BSON format)

− a JSON or BSON literal string

− a SQL variable containing a JSON or BSON string

� The FORMAT clause is used to explicitly tell Db2 what type of data is found in the
JSON Expression

IBM Cloud27

JSON_EXISTS: Checking for Key-Value Pairs

� JSON_EXISTS allows you to check whether or not a valid JSON key exists within a
document for the provided search path

� Example
VALUES JSON_EXISTS(customer, '$.identity.middlename')

 ➡ False

� The ON ERROR clause of the JSON_EXISTS function determines what value should be
returned when an error occurs

IBM Cloud28

JSON_EXISTS: Examples
c = {

"empno":"000070",

"firstnme":"EVA",

"midinit":"D",

"lastname":"PULASKI",

"workdept":"D21",

"phoneno":[7831,1422,4567],

"hiredate":"09/30/2005",

"job":"MANAGER",

"edlevel":16,

"sex":"F",

"birthdate":"05/26/2003",

"pay":

{

"salary":96170.00,

"bonus":700.00,

"comm":2893.00

}

}

JSON_EXISTS(c,'$.empno')

➡ true

JSON_EXISTS(c,'$.phoneno[0]')

➡ true

JSON_EXISTS(c,'$.middleinit')

➡ false

JSON_EXISTS(c,'$.pay')

➡ true

JSON_EXISTS(c,'$.phoneno[999]' TRUE ON ERROR)

➡ true

IBM Cloud29

JSON_VALUE: Retrieving Individual Values

� The JSON_VALUE function is used to retrieve a single value from a JSON document in
the form of a "native" SQL data type

� This function implicitly converts the returning value from its original JSON format to the
identified Db2 data type

� Since it is a scalar function, JSON_VALUE can only return a single value and will return an
error if there are multiple values found

IBM Cloud30

JSON_VALUE: Returning Clause

� The RETURNING clause is an optional part of the JSON_VALUE function and indicates
what SQL data type should be used to format the JSON value retrieved

� If you want to have the results returned as a specific data type, then you need to supply
this parameter otherwise Db2 will return a large character field (CLOB)

� The RETURNING clause can contain any of the data types that are supported within Db2

�You must ensure that the size of the output data type is large enough to support the data
being retrieved, and that it is of the proper type

IBM Cloud31

JSON_VALUE: ON EMPTY and ON ERROR Clauses

� The ON EMPTY and ON ERROR clauses provide options for how to handle an error
condition that was raised

�While there are some slight differences between the Db2 JSON functions, the common
options are:

� NULL – Return a null instead of an error

� ERROR – Raise an error

� DEFAULT <value> – Return a default value instead

� These actions are specified in front of the exception handling clause

� The default value is NULL ON EMPTY and NULL ON ERROR

IBM Cloud32

DEFAULT Value Considerations

� The DEFAULT clause can be used to return an atomic value back to the SQL statement

�Care must be take to make sure you supply the correct RETURNING datatype for the
default value, otherwise the value will be converted to a CLOB object

IBM Cloud33

ERROR ON EMPTY Use

� From a syntax perspective, ERROR ON EMPTY should not be used by itself

� If the JSON function triggers the ERROR ON EMPTY clause, it will then fire the ON
ERROR clause

� The default value for ON ERROR is NULL so the ERROR ON EMPTY will not have the desired
effect by itself

� The following diagram illustrates the interaction between the two clauses.

IBM Cloud34

JSON_VALUE: Examples
c = {

 "empno":"000070",

 "firstnme":"EVA",

 "midinit":"D",

 "lastname":"PULASKI",

 "workdept":"D21",

 "phoneno":[7831,1422,4567],

 "hiredate":"09/30/2005",

 "job":"MANAGER",

 "edlevel":16,

 "sex":"F",

 "birthdate":"05/26/2003",

 "pay":

 {

 "salary":96170.00,

 "bonus":700.00,

 "comm":2893.00

 }

 }

JSON_VALUE(c,'$.empno')

➡ '000070'

JSON_VALUE(c,'$.empno' RETURNING INT)

➡ 70

JSON_VALUE(c,'$.middle' DEFAULT '?' ON EMPTY)

➡ '?'

JSON_VALUE(c,'strict $.middle' DEFAULT '?' ON EMPTY)

➡ null

JSON_VALUE(c,'$.phoneno[999]' DEFAULT 0 ON EMPTY)

➡ SQL0440N No authorized routine named "CLOB" of type

 "FUNCTION" having compatible arguments was found.

 SQLSTATE=42884 SQLCODE=-440

IBM Cloud35

JSON_QUERY: Retrieving Objects and Arrays

� JSON_VALUE is limited to retrieving atomic or individual values from within a document

� In order to extract native JSON values, which can include complex ones such as multiple
array values or entire JSON objects, you must use the JSON_QUERY function

� The json-expression, and json-path-expression are identical to the JSON_VALUE function

� Two additional clauses are added for dealing with objects:

� Wrapper clause for dealing with arrays

� Quotes clause for handling character string output

IBM Cloud36

JSON_QUERY: Returning Clause

� The RETURNING clause is an optional part of the JSON_QUERY function and indicates
what SQL data type should be used to format the JSON value retrieved

� The JSON_QUERY function always returns a string type – the only datatype options are
CHAR, VARCHAR, or CLOB

�You must ensure that the size of the output data type is large enough to support the
generated object or array

− JSON_QUERY output is always a string which may contain results formatted as an object with
braces { }, or as an array []

− Need the data type to be large enough to support the additional characters that are generated

IBM Cloud37

JSON_QUERY: WRAPPER Clause (1)

� JSON_QUERY has the ability to return multiple JSON values as a single JSON object
through the use of the array wrapper clause

� This clause allows you to "wrap" multiple values returned from the JSON document into
a single JSON array type

� There are three options when dealing with wrapping results:

� WITHOUT (ARRAY) WRAPPER

� WITH CONDITIONAL (ARRAY) WRAPPER

� WITH UNCONDITIONAL (ARRAY) WRAPPER

� The ARRAY keyword is not required but included for compatibility with the standard

IBM Cloud38

JSON_QUERY: WRAPPER Clause (2)

� The WITHOUT clause is the default setting which means that the results will not be
wrapped as an array regardless of how many JSON values are returned

� If the result of your search is more than one value, the function will treat this as an error and
follow the behavior set in the ON ERROR clause

�An UNCONDITIONAL WRAPPER will always create an array of values

�A CONDITIONAL WRAPPER will only create an array if there are one or more elements
returned or if it is an object

� If the result is an array, it will not place an array wrapper around it

IBM Cloud39

JSON_QUERY: ON EMPTY and ON ERROR Clauses

� The ON EMPTY and ON ERROR clauses provide options for how to handle an error
condition that was raised

� The JSON_QUERY function cannot return a default value other than an EMPTY ARRAY or
an EMPTY OBJECT

− Empty array returns []

− Empty object returns { }

� These actions are specified in front of the exception handling clause

− The default value is NULL ON EMPTY and NULL ON ERROR

IBM Cloud40

JSON_QUERY: QUOTES Clause

� The JSON_QUERY function has an option to eliminate the quotes that are required to
surround character strings in JSON

� There are two options:

� KEEP QUOTES – The default is to keep the existing quotes

� OMIT QUOTES – Remove the quotations around a string

� The OMIT QUOTES option is limited to use with the WITHOUT ARRAY WRAPPER clause,
so multiple values cannot be returned using this keyword

IBM Cloud41

JSON_QUERY: Examples
c = {

 "empno":"000070",

 "firstnme":"EVA",

 "midinit":"D",

 "lastname":"PULASKI",

 "workdept":"D21",

 "phoneno":[7831,1422,4567],

 "hiredate":"09/30/2005",

 "job":"MANAGER",

 "edlevel":16,

 "sex":"F",

 "birthdate":"05/26/2003",

 "pay":

 {

 "salary":96170.00,

 "bonus":700.00,

 "comm":2893.00

 }

 }

JSON_QUERY(c,'$.pay')

➡ {

 'salary': 96170.0,

 'bonus': 700.0,

 'comm': 2893.0

 }

JSON_QUERY(c,'$.pay.bonus')

➡ '700.0'

JSON_QUERY(c,'$.phoneno[0]')

➡ 7831

JSON_QUERY(c,'$.phoneno[0]'

 WITH CONDITIONAL WRAPPER)

➡ [7831]

JSON_QUERY(c,'$.phoneno[*]' WITH CONDITIONAL WRAPPER)

➡ [7831,1422,4567]

IBM Cloud42

JSON_TABLE: Retrieving Objects and Arrays

� JSON_VALUE and JSON_OBJECT can be used individually to retrieve all of the values
within a JSON document, but an easier method exists with the JSON_TABLE function

� This function does not yet implement all of the ISO JSON_TABLE function definition but
it can help simplify retrieval of multiple object in a document

� The JSON_TABLE function has two ways of publishing column values

� Regular column expressions mimic the JSON_VALUE function

� Formatted column expressions use features from the JSON_QUERY function

IBM Cloud43

JSON_TABLE: Column Expressions

� The body of the JSON_TABLE function includes the list of columns that you want created

� Each of these formats uses the same column name, data type and path definitions

� The column can be defined in one of two ways:

� A column name derived from a JSON path expression and a data type
"forward.primary.last_name" VARCHAR(20)

�A SQL column name with a data type and a JSON path expression

NAME VARCHAR(20) FORMAT JSON PATH "$.forward.primary.last_name"

� The first method can be a convenient short cut when your JSON document has most of
the data at the root ($.) level

� The column names can become extremely long if you have multi-level objects

Regular Column Expression Formatted Column Expression

IBM Cloud44

JSON_TABLE: Path Expression

� The column path expression is identical to the json-path-expression discussed earlier

� The path is used to locate the object in the JSON document

(1) ADDRESS VARCHAR(300) FORMAT JSON '$.address'

(2) "address" VARCHAR(300)

� The path expression must be a constant string expression

� Cannot use SQL variables or the contents of a column as input to the path expression

� The rules for the path expression depend on whether or not you use the PATH keyword

� PATH 'value'

• If you use the PATH keyword, the path expression must include the entire path including the anchor
string '$.'

� No PATH provided

• If you do not use the PATH keyword, the JSON_TABLE function assumes that the path will be found in
the column name

� In the event you have included the path expression in the column name and included the
PATH keyword, the PATH expression will take precedence

IBM Cloud45

JSON_TABLE: Data Type

� The data types available to use in the column definition depends on which column
format you use

� The regular column format can return data in any valid Db2 data type

� The formatted column format mandates the used of the FORMAT JSON clause which restricts
results to character strings only

� FORMAT JSON will cause the JSON_TABLE function to return the data as a JSON value

� This is useful for returning array data or complex objects as a character string

� This format only supports character strings, so you cannot materialize an individual value as a
numeric value, only as its character equivalent

IBM Cloud46

JSON_TABLE: Additional Clauses

�A Regular Column Expression can include the ON EMPTY and ON ERROR clauses which
are identical to the JSON_VALUE syntax

�A Formatted Column Expression include ON EMPTY/ERROR, QUOTES, and WRAPPER
clauses which are identical to the JSON_QUERY syntax

IBM Cloud47

JSON_TABLE: Examples
book =

 {

 "authors":

 [

 {"first":"Paul", "last":"Bird"},

 {"first":"George","last":"Baklarz"}

],

 "forward":

 {

 "primary":

 {"first":"Thomas","last":"Hronis"}

 },

 "formats":

 {

 "hardcover": 19.99,

 "paperback": 9.99,

 "ebook" : 1.99,

 "pdf" : 1.99

 }

 }

SELECT T.* FROM

 JSON_TABLE(:book, 'strict $'

 COLUMNS("authors[0].first" VARCHAR(20),

 "authors[0].last" VARCHAR(20))

 ERROR ON ERROR) AS T

authors[0].first authors[0].last

---------------- ---------------

Paul Bird

SELECT T.* FROM

 JSON_TABLE(:book, 'strict $'

 COLUMNS(

 FIRST_NAME VARCHAR(20) PATH '$.authors[1].first',

 LAST_NAME VARCHAR(20) PATH '$.authors[1].last'

)

 ERROR ON ERROR) AS T

FIRST_NAME LAST_NAME

------------------- --------------------

George Baklarz

IBM Cloud48

Publishing JSON

JSON_OBJECT

JSON_ARRAY

IBM Cloud49

JSON_OBJECT: Retrieving Objects and Arrays

� The JSON_OBJECT function will generate a JSON object by creating key:value pairs

�Objects can be created at at multiple levels by nesting the JSON_OBJECT function

� The key:value pairs are generated using the following syntax:

IBM Cloud50

JSON_OBJECT: Additional Clauses

� There are three additional clauses that are associated with the JSON_OBJECT clause
that apply to the entire block of key:value pairs, not individual values

� Null clause – What to use in the event the value is null

� Unique clause – Whether or not unique keys are enforced at a particular level

� Returning clause – How the published string should be returned

IBM Cloud51

JSON_OBJECT: Null Clause

� The NULL option on the JSON_OBJECT function is used to handle values that are null when
retrieved from a table

� The default setting is NULL ON NULL which will publish the key:value pair even if the value is null

VALUES JSON_OBJECT(

 KEY 'name' VALUE null,

 KEY 'salary' VALUE 95000

 NULL ON NULL

)

Result: {"name":null,"salary":95000}

� Setting ABSENT ON NULL will prevent the key:value pair from being included in the output.

VALUES JSON_OBJECT(

KEY 'name' VALUE null,

KEY 'salary' VALUE 95000

ABSENT ON NULL

Result: {"salary":95000}

IBM Cloud52

JSON_OBJECT: Unique Clause

�A best practice for key:value pairs is not to duplicate a key name at the same level

− If there are duplicate keys within a document, there is no guarantee of which one will be chosen
when you attempt to retrieve it

� The default behavior is to ignore duplicate keys (WITHOUT UNIQUE KEYS) so the following example

will not generate an error

VALUES JSON_OBJECT(

KEY 'name' VALUE 'Thomas',

KEY 'name' VALUE 'Hronis'

)

�When WITH UNIQUE KEYS is specified as part of the syntax, the function will raise an error
code of -16413

�Note that duplicate keys can exist at different levels in an object and within arrays

IBM Cloud53

JSON_ARRAY: Publishing Array Values

� In order to create arrays, we must use the JSON_ARRAY function

� There are two forms of the JSON_ARRAY function

� The first version is similar to the JSON_OBJECT function where you supply a list of values to
create an array

� The second form of the JSON_ARRAY function uses the results of a SQL select statement to build
the array values

IBM Cloud54

JSON_ARRAY: Additional Clauses

� There are two additional clauses that used with the JSON_ARRAY function that are
similar to the JSON_OBJECT clauses

� Null clause – What to use in the event the value is null

� Returning clause – How the published string should be returned

IBM Cloud55

JSON_ARRAY: Creating an Array with Values

� The first form of the JSON_ARRAY function requires a list of values to create an array

− There is no key associated with a JSON array, so you only need to supply the list of values that
you want published

VALUES JSON_ARRAY(1523, 902, 'Thomas', 7777)

Result: [1523,902,"Thomas",7777]

�JSON array elements do not need to have the same data type

�Array values can contain other objects
VALUES JSON_ARRAY(1523, 902,

JSON_OBJECT(KEY 'lastname' VALUE 'Bird') FORMAT JSON,

7777)

Result: [1523,902,{"lastname":"Bird"},7777]

�While the JSON_ARRAY function can be used by itself, it does not create a proper
JSON document

− The output from this function is meant to be used as part of a JSON_OBJECT structure

IBM Cloud56

JSON_ARRAY: Creating an Array with an SQL Statement

� The second form of the JSON_ARRAY function uses the results of a SQL select
statement to build the array values

�Only one SELECT statement can be used in the body of the function
VALUES JSON_OBJECT(KEY 'departments'

 VALUE JSON_ARRAY(SELECT DEPTNO FROM DEPARTMENT WHERE DEPTNAME LIKE 'B%')

 FORMAT JSON)

Result: {"departments":["F22","G22","H22","I22","J22"]}

� If you do need to create an array from multiple sources, you should look at using a
SELECT statement with UNION to create one list of items

IBM Cloud57

Performance and
Maintenance
Indexing and Storage Considerations

IBM Cloud58

Performance: Storage Format

�Db2 uses the BSON format internally for the processing done by the JSON
access functions

− The BSON format has the advantage of having already parsed the document into key:value
pairs as well as having a tree structure available for easy traversal

− JSON documents need to be converted internally to BSON to allow the Db2 functions to be
able traverse them

− Any data stored in JSON format that is accessed by these functions is first implicitly converted
to BSON format and any result returned is converted back to JSON format (if this is requested)

− This overhead occurs for each unique access to the JSON data and can significantly impact the
performance of a query

� This means that there are two areas where this implicit overhead from JSON to BSON
can impact query performance when accessing a JSON document:

− How many values do you need to materialize as part of the SELECT column list

− How many values do you need to reference in the SQL predicates

IBM Cloud59

Performance: Storage Format Results

�We ran a number of sample tests to explore the performance impacts of the
different choices with the following SQL

SELECT COUNT(*) FROM CUSTOMERS WHERE

 JSON_VALUE(DETAILS, '$.contact.state' RETURNING CHAR(2)) = 'OH'

� In the graphs that follow, 3 bars are shown with the labels JSON, BLOB, and BSON

� JSON – Data stored as JSON in a VARCHAR column

� BLOB – Data stored as BSON in a BLOB column (in-lined)

� BSON – Data stored as BSON in a VARBINARY column

Statements Executed in 30 second interval

Disclaimer: All of the examples in this presentation are using generated data and are run in a controlled environment. The

performance achieved may not be indicative of your compute environment and you are encouraged to test these examples yourself.

IBM Cloud60

Performance: Some Conclusions

� If JSON documents are identified by predicates on non-JSON columns, then storing the
fields in JSON or BSON format makes little difference from the perspective of
predicate processing

� If the SQL requires columns or predicates based on the JSON data itself, then additional
overhead is required to evaluate each predicate for JSON formatted documents

� Finally, the actual retrieval of the target value will also incur conversion overhead

� The decision to use BSON versus JSON as the storage format comes down to whether
or not the application needs to regularly search for fields within a JSON document

− If the majority of the JSON access is to store and retrieve entire documents, then the overhead
of BSON conversion is unnecessary

− If the access pattern to the JSON document is unknown, then it may be worthwhile to convert
the documents to BSON for faster retrieval

− The other option is to use indexes which is discussed on the next page

IBM Cloud61

Performance: Using Indexes

� Leveraging Db2's index on expression capability allows us to create indexes on JSON
documents to allow faster access

� Example: Searching for an employee number will result in a scan against the table if no
indexes are defined:

SELECT JSON_VALUE(EMP_DATA, '$.lastname' RETURNING CHAR(20)) AS LASTNAME FROM JSON_EMP

WHERE JSON_VALUE(EMP_DATA, '$.empno' RETURNING CHAR(6)) = '000010'

�Creating the following index will greatly improve performance of this query
CREATE INDEX IX_JSON

 ON JSON_EMP (JSON_VALUE(EMP_DATA, '$.empno' RETURNING CHAR(6));

versus

Statements Executed in 30 second interval

IBM Cloud62

Maintenance: SYSTOOLS.JSON_UPDATE

� The ISO JSON standard does not currently provide an update function

− It is left up to the application developer to retrieve the entire document and update it
externally and then re-insert (or update) the JSON document in the database

� The JSON_UPDATE function is part of the SYSTOOLS schema and allows for in-place
updating of a document

− It requires the user or application be granted EXECUTE privilege on the function

− Must explicitly qualify any reference to the function with the SYSTOOLS schema

� The syntax of the JSON_UPDATE function is:
JSON_UPDATE(document, '{$set : {field:value}}')

'{$unset: {field:null}}'

� The arguments are:

− document – BSON document

− operation ($set or $unset)

− key – The key we are looking for

IBM Cloud63

Summary

IBM Cloud64

Publishing Functions Comments

JSON_ARRAY Creates JSON array from input key value pairs

JSON_OBJECT Creates JSON object from input key value pairs

Retrieval Functions Comments

JSON_QUERY Extract a JSON object from a JSON object

JSON_VALUE Extract an SQL scalar value from a JSON object

JSON_EXISTS Determines whether or not a value exists in a document

JSON_TABLE Creates relational output from a JSON object

Conversion Function Comments

BSON_TO_JSON Convert BSON formatted document into JSON strings

JSON_TO_BSON Convert JSON strings into a BSON document format

New ISO JSON SQL Functions

Lot's of New Capabilities!

IBM Cloud65

Additional Resources

�Read the new Db2 JSON Book

− ibm.biz/db2json

�Visit the Digital Technical Engagement Site

− The Digital Technical Engagement group (DTE) provides videos, product tours, and product
labs for you to try out technology at your leisure

− The product labs are fully functional servers that are provisioned for you

− These servers contain the base products (Db2) along with self-paced examples

− The Db2 product lab contains Jupyter notebooks which demonstrate new SQL features

− https://www.ibm.com/cloud/garage/dte/tutorial/modern-application-development-db2

�GitHub Db2-Samples

− There are a number of Db2 sample programs available on GitHub

− If you have a Docker environment available, or are using Jupyter notebooks, then the following
repository may be of interest

− https://github.com/DB2-Samples/db2jupyter

IBM Cloud66

