
Db2 Query Optimization 101

John Hornibrook

IBM Canada

Db2 LUW

Optimal query access plans are essential for good data server 
performance and it is the Db2 query optimizer's job to choose 
the best access plan. The optimizer is a very sophisticated 
component of the data server, tasked with the challenging job 
of choosing good access paths for the variety of features and 
table organizations supported by Db2. The optimizer can 
automatically rewrite complex SQL resulting in huge 
performance improvements. It models various aspects of Db2 
runtime so that it can choose the best access plan out of 
hundreds of thousands of possible options. Attend this session 
to get an overview of how the optimizer works and to get some 
tips on how to understand its decisions and control its behavior.

1



Agenda

• What is query optimization and why is it important for performance?

• The different phases of query optimization

• How catalog statistics are used in query optimization

• How the query optimizer costs access plans

• Understand access plans using the explain facility

2

2



Why Optimize Queries (1|2)?

• Performance
• Improvement can be orders of magnitude for complex queries

• Lower total cost of ownership
• Query tuning requires deep skill

• Complex DB designs
• SQL/XQuery generated by query generators, naive users
• Fewer skilled administrators available 
• Various configuration and physical implementation

3

This Photo by Unknown Author is licensed under CC BY-SA

3



Why Optimize Queries (2|2)?

• There are a lot of factors to consider when optimizing query execution:
• Configuration options 

• Memory, CPUs, I/O, communication channels

• Table organization schemes
• DB partitioning, table partitioning, multi-dimensional clustering 

• Data formats
• Column, row, Hadoop

• Complex data types 
• XML

• Federation, data virtualization
• Parts of the query execute on remote DB servers.

• Auxiliary performance and storage options
• Indexes, MQTs, compression

4

This Photo by Unknown Author is licensed under CC BY

4



What is Query Optimization?
• SQL compilation:
• In: SQL statement, Out: access section
• Query optimization is 2 steps in the Db2 SQL statement compilation process

• Query transformation (rewrite)
• Access plan generation

SELECT ITEM_DESC, SUM(QUANTITY_SOLD), 

AVG(PRICE), AVG(COST)

FROM PERIOD, DAILY_SALES, PRODUCT, STORE

WHERE

PERIOD.PERKEY=DAILY_SALES.PERKEY AND 

PRODUCT.PRODKEY=DAILY_SALES.PRODKEY

AND 

STORE.STOREKEY=DAILY_SALES.STOREKEY AND 

CALENDAR_DATE BETWEEN AND

'01/01/2012' AND '04/28/2012' AND

STORE_NUMBER='03' AND

CATEGORY=72

GROUP BY ITEM_DESC

Thread 0

DSS

TQA (tq1)

AGG (complete)

BNO

EXT

Thread 1

TA (Product)

NLJN (Daily Sales)

NLJN (Period)

NLJN (Store)

AGG (partial)

TQB (tq1)

EXT

Thread 2

TA (DS_IX7)

EXT

Thread 3

TA (PER_IX2)

EXT

Thread 4

TA (ST_IX1)

EXT

Access plan generationQuery transformation

Access 

section

Dozens of query 

transformations

Hundreds or thousands 

of access plan options

Store

Product

Product Store

NLJOIN

Daily SalesNLJOIN

Period

NLJOIN

Product

NLJOIN

Daily Sales

NLJOIN

Period

NLJOIN

Store

HSJOIN

Daily Sales

HSJOIN

Period

HSJOIN

Product

StoreZZJOIN

Daily Sales

HSJOIN

Period

5

5



Phases of SQL Compilation 

Parsing
▪ Catch syntax errors
▪ Generate internal representation of query 

Semantic checking
▪ Determine if query makes sense
▪ Incorporate view definitions
▪ Add logic for constraint checking and 

triggers
Query optimization

▪ Modify query to improve performance 
(Query Rewrite)

▪ Choose the most efficient "access plan" 
Pushdown Analysis

▪ Federation “optimization”
Threaded code generation

▪ Generate efficient "executable" code 
▪ “Access section”

QGM

•Sometimes references to “optimization” really 
mean SQL compilation 
•There is a lot more involved to SQL compilation

6

6



Query Optimization
• SQL compilation:

• Query transformation (rewrite)
• Access plan generation

SELECT ITEM_DESC, SUM(QUANTITY_SOLD), 

AVG(PRICE), AVG(COST)

FROM PERIOD, DAILY_SALES, PRODUCT, STORE

WHERE 

PERIOD.PERKEY=DAILY_SALES.PERKEY AND 

PRODUCT.PRODKEY=DAILY_SALES.PRODKEY

AND 

STORE.STOREKEY=DAILY_SALES.STOREKEY AND 

CALENDAR_DATE BETWEEN AND

'01/01/2012' AND '04/28/2012' AND

STORE_NUMBER='03' AND

CATEGORY=72

GROUP BY ITEM_DESC

Thread 0

DSS

TQA (tq1)

AGG (complete)

BNO

EXT

Thread 1

TA (Product)

NLJN (Daily Sales)

NLJN (Period)

NLJN (Store)

AGG (partial)

TQB (tq1)

EXT

Thread 2

TA (DS_IX7)

EXT

Thread 3

TA (PER_IX2)

EXT

Thread 4

TA (ST_IX1)

EXT

Access plan generationQuery transformation

Access 

section

Dozens of query 

transformations

Hundreds or thousands 

of access plan options

Store

Product

Product Store

NLJOIN

Daily SalesNLJOIN

Period

NLJOIN

Product

NLJOIN

Daily Sales

NLJOIN

Period

NLJOIN

Store

HSJOIN

Daily Sales

HSJOIN

Period

HSJOIN

Product

StoreZZJOIN

Daily Sales

HSJOIN

Period

7

7



Query Rewrite - An Overview

• What is Query Rewrite?
• Rewriting a given SQL query into a semantically equivalent form that may be 

processed more efficiently

• Example:
• Original query:

SELECT DISTINCT CUSTKEY, NAME FROM CUSTOMER

• After Query Rewrite:
SELECT CUSTKEY, NAME FROM CUSTOMER

• Rationale:
• CUSTKEY is unique, distinct is redundant

8

8



Query Rewrite - Why?

• Hidden culprit:
• Multiple specifications allowed in SQL
• SQL allows multiple specifications ;-)
• There are many ways to express the same query

• Visible reasons:
• Query generators

• Often produce suboptimal queries that don't perform well
• Don't permit "hand optimization"

• Complex queries
• Often result in redundancy, especially with views

• Large data volumes
• Optimal access plans more crucial
• Penalty for poor planning is greater

9

9



Let’s follow an example

SELECT 

SUM(CS_EXT_SHIP_COST) AS "TOTAL SHIPPING COST", 

AVG(CS_EXT_SHIP_COST) AS “AVERAGE SHIPPING COST" 

FROM 

CATALOG_SALES CS1,

DATE_DIM,

CUSTOMER_ADDRESS

WHERE 

D_DATE BETWEEN ‘2018-4-01' AND (CAST(‘2018-4-01' AS DATE) + 60 DAYS) AND 

CS1.CS_SHIP_DATE_SK = D_DATE_SK AND 

CS1.CS_SHIP_ADDR_SK = CA_ADDRESS_SK AND 

CA_STATE = 'NY' AND 

NOT EXISTS 

(SELECT * FROM CATALOG_RETURNS CR1 WHERE CS1.CS_ORDER_NUMBER = CR1.CR_ORDER_NUMBER )

10

3 tables 

(2 joins)

Search conditions

(predicates)

“Get the total and average
shipping cost for NY catalog sales 
that had no returns for the 60 days 
starting Apr. 1 2018”

10



Step 1: Parsing and Query Graph Construction

• An SQL statement is 
parsed into a Query 
Graph

• Yellow boxes are 
relational operations

• Red boxes are tables or 
table functions

11

CATALOG

RETURNS

CATALOG

SALES

CUSTOMER

ADDRESS

DATE_DIM

SELECT 2

SELECT 3

GROUP BY

SELECT 1

SELECT * FROM 

CATALOG_RETURNS CR1 

WHERE 

CS1.CS_ORDER_NUMBER = 

CR1.CR_ORDER_NUMBER 

D_DATE BETWEEN ‘2018-4-01' AND 

(CAST(‘2018-4-01' AS DATE) + 60 DAYS) AND   

CS1.CS_SHIP_DATE_SK = D_DATE_SK AND 

CS1.CS_SHIP_ADDR_SK = CA_ADDRESS_SK AND 

CA_STATE = 'NY' AND NOT EXISTS (SELECT 3)

SUM(CS_EXT_SHIP_COST), 

AVG(CS_EXT_SHIP_COST

Correlation!

The SQL statement is first parsed and the relational operations are represented as 
nodes in a query graph. The yellow nodes represent relational operations such as 
selection, aggregation (group by), union, insert, update, delete, etc.. The red 
nodes are leaf nodes representing data sources such as tables or table functions. 
The edges represent the flow of rows. Rows can flow in both directions. A 
downward flow represents a correlated reference in a lower sub-select, such as 
the correlated NOT EXISTS subquery in this example. Correlation requires that the 
lower sub-select be re-evaluated for each row provided by the downward edge.

A SELECT node can have multiple input edges which can either represent joins or 
subquery predicates. SELECT nodes also include SELECT list items including 
expressions and WHERE clause predicates.

11



Step 2: Query Rewrite
• Correlated NOT EXISTS subquery is 

converted to an anti-join

• Constant expressions are pre-
computed

• Aggregation operations are unified

12

CATALOG

RETURNS

CATALOG

SALES

CUSTOMER

ADDRESS

DATE_DIM

SELECT 2

ANTIJOIN

GROUP BY

SELECT 1

SELECT Q5.CS_EXT_SHIP_COST

CATALOG_RETURNS Q1 

ANTIJOIN (SELECT 2) Q5

ON Q5.CS_ORDER_NUMBER = 

Q1.CR_ORDER_NUMBER)

D_DATE >= ’04/01/2018' AND

D_DATE <= ’05/31/2018’ AND   

CS_SHIP_DATE_SK = D_DATE_SK AND 

CS_SHIP_ADDR_SK = CA_ADDRESS_SK

AND CA_STATE = 'NY'

SUM(CS_EXT_SHIP_COST) AS $C0,     

COUNT_BIG(CS_EXT_SHIP_COST) AS $C1 

$C0 AS "TOTAL SHIPPING COST",

($C0/$C1) AS "AVG SHIPPING COST" 

3 important query rewrites have occurred:

1) The correlated NOT EXISTS subquery has been rewritten as an anti-join. An anti-join is a type 
of join where only the rows that don’t match are returned. The Db2 query runtime engine 
supports a efficient native anti-join.

2) The date expression “CAST(‘2018-4-01' AS DATE) + 60 DAYS” has been pre-computed as 
’05/31/2018’. This allows the optimizer to compute a more accurate selectivity estimate in a 
later phase.

3) The AVG aggregation function can be replaced with SUM/COUNT, re-using the existing SUM 
result

12



Db2 Query Rewrite Technology (1|2)

• Heuristic-based decisions
• Push predicates close to data access
• Decorrelate whenever possible
• Transform subqueries to joins
• Merge view definitions

• Extensible architecture
• Set of rewrite rules and rule engine
• Each rewrite rule is self-contained
• Can add new rules and disable existing ones easily

13

13



Db2 Query Rewrite Technology (2|2)

• Rule engine with local cost-based decisions

• Rule engine iteratively transforms query until the query graph 
reaches a steady-state

• ~140 rules

• This presentation shows only a few examples

14

14



Query Rewrite - Operation Merge

• Goal: give the optimizer maximum latitude in its decisions
• Techniques:
• View merge 

• makes additional join orders possible
• can eliminate redundant joins 

• Subquery-to-join transformation
• removes restrictions on join method/order 
• improves efficiency

• Redundant join elimination
• satisfies multiple references to the same table with a single scan

• Shared aggregation
• reduces the number of aggregation operations

15

15



Query Rewrite - Predicate Translation

• GOAL: optimal predicates
• Distribute NOT (De Morgan's law)

... WHERE NOT(COL1 = 10 OR COL2 > 3) 
• becomes
... WHERE COL1 <> 10 AND COL2 <= 3

• Predicate transitive closure
• given predicates: 
T1.C1 = T2.C2, T2.C2 = T3.C3, T1.C1 > 5

• add these predicates...
T1.C1 = T3.C3 AND T2.C2 > 5 AND T3.C3 > 5

• IN-to-OR conversion for Index ORing
• and many more...

16

16



Query Optimization
• SQL compilation:

• Query transformation (rewrite)
• Access plan generation

SELECT ITEM_DESC, SUM(QUANTITY_SOLD), 

AVG(PRICE), AVG(COST)

FROM PERIOD, DAILY_SALES, PRODUCT, STORE

WHERE 

PERIOD.PERKEY=DAILY_SALES.PERKEY AND 

PRODUCT.PRODKEY=DAILY_SALES.PRODKEY

AND 

STORE.STOREKEY=DAILY_SALES.STOREKEY AND 

CALENDAR_DATE BETWEEN AND

'01/01/2012' AND '04/28/2012' AND

STORE_NUMBER='03' AND

CATEGORY=72

GROUP BY ITEM_DESC

Thread 0

DSS

TQA (tq1)

AGG (complete)

BNO

EXT

Thread 1

TA (Product)

NLJN (Daily Sales)

NLJN (Period)

NLJN (Store)

AGG (partial)

TQB (tq1)

EXT

Thread 2

TA (DS_IX7)

EXT

Thread 3

TA (PER_IX2)

EXT

Thread 4

TA (ST_IX1)

EXT

Access plan generationQuery transformation

Access 

section

Dozens of query 

transformations

Hundreds or thousands 

of access plan options

Store

Product

Product Store

NLJOIN

Daily SalesNLJOIN

Period

NLJOIN

Product

NLJOIN

Daily Sales

NLJOIN

Period

NLJOIN

Store

HSJOIN

Daily Sales

HSJOIN

Period

HSJOIN

Product

StoreZZJOIN

Daily Sales

HSJOIN

Period

17

17



Access Plan Generation

• An Access Plan represents a sequence of runtime operators used to 
execute the SQL statement

• Represented as a  graph where each node is an operator and the 
edges represent the flow of data

• The order of execution is generally left to right
• But there are some exceptions
• (Hash join build table is on the RHS and is created first)

• Use the explain facility to see the access plan
• (More on this later)

18

HSJOIN

CATALOG_

SALES

DATE_DIM

TBSCAN TBSCAN

1) Create 

hash table

2) Probe

hash table

18



Access Plan Generation

• Access plan generation occurs by scanning the Query Graph

• The access plan is built from the bottom up
1. Build sub-plans for accessing tables first

• Table scans, index scans
2. Build plans for relational operations that consume those tables

• Joins, GROUP BY, UNION, ORDER BY, DISTINCT

• Multiple preparatory Query Graph scans collect information to drive 
access plan generation
• Interesting orders, DB partitioning and keys
• Dependencies dictated by the Query Graph

• i.e. correlation – must read table 1 before table 2

19

19



Access Plan Generation – Base Access and Joins

CATALOG

SALES 

Q2

SELECT

DATE_DIM

Q1

CUSTOMER

ADDRESS 

Q3

D_DATE >= ’04/01/2018' AND

D_DATE <= ’05/31/2018’ AND   

CS_SHIP_DATE_SK = D_DATE_SK AND 

CS_SHIP_ADDR_SK = CA_ADDRESS_SK

AND CA_STATE = 'NY'

TBSCAN

IXSCAN 1

IXSCAN 2

TBSCAN

IXSCAN 3

FETCH

TBSCAN

TBSCAN

Q1

TBSCAN

Q2

HSJOIN

TBSCAN

Q2

TBSCAN

Q1

HSJOIN

TBSCAN

Q1

TBSCAN

Q2

NLJOIN

TBSCAN

Q1

IXSCAN

Q2

NLJOIN

2) Build base 

accesses

3) Enumerate 

joins

TBSCAN

Q1

TBSCAN

Q2

HSJOIN TBSCAN

Q3

HSJOIN

2-way joins

3-way joins

1) Scan Query Graph

20

• For each relational operation in the query 
graph, evaluate runtime alternatives
• Operation order

• joins
• predicate application – where?
• aggregation – can be staged

• Implementation to use:
• table scan vs. index scan
• nested-loop join vs. sort-merge join vs. hash join 

vs. zig-zag join

20



Access Plan Operators

• Access plan operators have arguments and properties

• Arguments tell Db2 runtime how they execute
• e.g. sort key columns, partitioning columns, # of pages to prefetch, etc.

• Properties describe characteristics of the data stream
• Columns projected
• Order
• Partitioning (DB partitioned environment)
• Keys (uniqueness)
• Predicates (filtering)
• Maximum cardinality

21

21



Access Plan Operator Properties

• Properties can be exploited to improve performance

• Order, uniqueness and partitioning can be “valuable”
• Because it takes work to create them
• Order needs SORT ($$$)
• Partitioning needs a table queue (TQ) ($$$)
• Uniqueness needs a DISTINCT (or duplicate removing SORT) ($$$)

• More expensive sub-plans are retained if they possess an ‘interesting’ 
property

• Interestingness depends on the semantics of the query
• Represented in the query graph

22

22



Access Plan Generation Considerations

• Where the access plan should execute:
• Database partitioned systems

• co-located, repartitioned or broadcast joins
• Multi-core parallelism

• degree of parallelism, parallelization strategies
• Federated systems

• push operations to remote servers
• compensate in Db2

• Column or row processing

23

23



Join Enumeration

• The search algorithm used to plan joins

• Search complexity depends on how tables are connected by 
predicates

• 2 methods:
• Greedy

• Most efficient, but  not exhaustive
• Could miss some good plans

• Dynamic
• Exhaustive, but expensive for large or highly connected join graphs

24

24



Dynamic Join Enumeration 

25

STORE_SALES

CUSTOMER

STORE

DATE_DIM

{ CUSTOMER (Q1) }, { STORE_SALES (Q4) }
{ STORE (Q2) }, { STORE_SALES (Q4) }
{ DATE_DIM (Q3) }, { STORE_SALES (Q4) }

{ CUSTOMER (Q1) }, { DATE_DIM (Q3), STORE_SALES (Q4) }       P4
{ CUSTOMER (Q1) }, { STORE (Q2), STORE_SALES (Q4) }               P5
{ STORE (Q2) }, { DATE_DIM (Q3), STORE_SALES (Q4) }                P6
{ STORE (Q2) }, { CUSTOMER (Q1), STORE_SALES (Q4) }               P5
{ DATE_DIM (Q3) }, { STORE (Q2), STORE_SALES (Q4) }                P6
{ DATE_DIM (Q3) }, { CUSTOMER (Q1), STORE_SALES (Q4) }       P4

{ CUSTOMER (Q1) }, { STORE (Q2), DATE_DIM (Q3), STORE_SALES (Q4) }
{ STORE (Q2) }, { CUSTOMER (Q1), DATE_DIM (Q3), STORE_SALES (Q4) }
{ DATE_DIM (Q3) }, { CUSTOMER (Q1), STORE (Q2), STORE_SALES (Q4) }

25



Greedy Join Enumeration

26

STORE_SALES

CUSTOMER

STORE

DATE_DIM

Only the cheapest join partition from each stage moves to 
the next stage

{ STORE_SALES (Q4) }, { CUSTOMER (Q1) }
{ STORE_SALES (Q4) }, { STORE (Q2) }
{ STORE_SALES (Q4) }, { DATE_DIM (Q3) }

{ CUSTOMER (Q1) }, { STORE (Q2), STORE_SALES (Q4) }
{ DATE_DIM (Q3) }, { STORE (Q2), STORE_SALES (Q4) }

{ CUSTOMER (Q1) }, { STORE (Q2), DATE_DIM (Q3), STORE_SALES (Q4) }

26



27

Optimization Classes and Join Enumeration
• Use optimization classes to control join enumeration method
• Recommendation – use the default (5)
• Greedy join enumeration

• 0 - minimal optimization for OLTP
• 1 - low optimization, no HSJOIN, IXSCAN, limited query rewrites
• 2 - full optimization, limit space/time

• use same query transforms & join strategies as class 5

• Dynamic  join enumeration
• 3 - moderate optimization, more limited plan space
• 5 - self-adjusting full optimization (default)

• uses all techniques with heuristics
• 7 - full optimization

• similar to 5, without heuristics
• 9 - maximal optimization

• spare no effort/expense
• considers all possible join orders, including Cartesian products!

•Optimization requires processing time and memory

•You can control resources applied to query optimization:

•(similar to the -O flag in a C compiler)

•Special register, for dynamic SQL
•SET CURRENT QUERY OPTIMIZATION = 1

•Bind option, for static SQL
• BIND YOURAPP.BND QUERYOPT 1

•Database configuration parameter, for default

•UPDATE DB CFG FOR <DB> USING 

DFT_QUERYOPT <N>

•Static & dynamic SQL may use different values



Optimizer Cost Model

• Detailed model for each access plan operator

• Estimates the # of rows processed by each operator (cardinality)
• Estimates predicate filtering (filter factor or selectivity)
• Most important factor in determining an operator’s cost

• Combine estimated runtime components to compute “cost”:
• CPU (# of instructions) +
• I/O (random and sequential) +
• Communications (# of IP frames, in parallel or Federated environments)

28

28



Simplified Costing Example (1|2)

• The cost model uses information from:
• DBM config
• System catalogs (SYSCAT.STOGROUPS, SYSCAT.TABLESPACES)
• Catalog statistics (SYSSTAT.* )

29

Customer

TBSCAN
WHERE STATE = ‘NC’

CARDINALITY: 1000000

FPAGES:                  50000

SELECTIVITY: 0.65

(frequent value statistics)

I/O cost = 

(50000 * PAGESIZE / DEVICEREADRATE (MB/s))

+ (50000 / EXTENTSIZE * OVERHEAD (ms))

CPU cost  = CPUSPEED * (

(#TBSCAN instructions * 50000) + (#predicate 

instructions* 1000000) + (#data copy * 0.65 * 1000000) )

Total Cost = I/O cost + CPU cost

StatisticsCost Model

OVERHEAD

This attribute specifies the I/O controller time and the disk seek and latency time in 
milliseconds.

DEVICE READ RATE

This attribute specifies the device specification for the read transfer rate in megabytes per 
second. This value is used to determine the cost of I/O during query optimization. If this value is 
not the same for all storage paths, the number should be the average for all storage paths that 
belong to the storage group.

29



Simplified Costing Example (2|2)

• Each runtime cost component is modelled using milliseconds

• Runtime cost components are summed

• This does NOT represent elapsed time
• Cost components typically execute concurrently
• CPU and I/O parallelism

• Therefore total cost is in units of ‘timeron’
• Just a made up name so it isn’t mistaken for elapsed time 

30

30



Optimizer Cost Model - Timerons

• Why is ‘timeron’ a better cost metric than elapsed time?
• Timeron represents total system resource consumption
• Preferred system metric assuming concurrent query / multi-user environment
• Usually correlates to elapsed time too

• Some exceptions:
• Approximate elapsed time is used for DB partitioned (MPP) systems

• Total cost is average resource consumption per DB partition
• Encourages access plans that execute on multiple DB partitions

• Cost to get the first N rows
• Used for OPTIMIZE FOR N ROWS/FETCH FIRST N ROWS ONLY or when ‘piped’ 

plans are desired
31

31



Costing for Database Partitioned Systems

• Cost is per DB partition

• Cost diminishes with more nodes -> encourages query parallelism

• Assumes a particular operator must process the same number of 
rows, globally

32

TBSCAN

250 rows

TBSCAN

250 rows

TBSCAN

250 rows

TBSCAN

250 rows

TBSCAN

1000 rows

Execute on 4 nodes
Cost = C * 250

Execute on 1 node
Cost = C * 1000

32



Optimizer Environment Awareness

• Speed of CPU
• Determined automatically at instance creation time
• Runs a timing program
• Can be set manually (CPUSPEED DBM configuration parameter)

• Storage device characteristics
• Used to model random and sequential I/O costs
• I/O speed is based on :

• I/O subsystem latency 
• Time to transfer data

• Parameters are represented at the storage group and table space level
• They are not set automatically by the DB2 server

33

33



Storage I/O Characteristics

• Storage groups
• Latency: OVERHEAD (ms)
• Data transfer speed: DEVICE READ RATE (MB/s)

• Table spaces:
• Latency: OVERHEAD (ms)
• Data transfer speed: TRANSFERRATE (ms/page)

• Depends on the page size

• Default values for automatic storage table spaces are inherited from 
their underlying storage group
• This is the recommended approach
• Otherwise, be careful to adjust for different page sizes!

34

https://www.ibm.com/docs/en/db2/11.5?topic=design-table-space-impact-query-optimization

OVERHEAD number-of-milliseconds Specifies the I/O controller usage and disk seek and latency 
time. This value is used to determine the cost of I/O during query optimization. The value of 
number-of-milliseconds is any numeric literal (integer, decimal, or floating point). If this value is 
not the same for all storage paths, set the value to a numeric literal which represents the 
average for all storage paths that belong to the storage group.If the OVERHEAD clause is not 
specified, the OVERHEAD will be set to 6.725 milliseconds.

DEVICE READ RATE number-megabytes-per-second Specifies the device specification for the 
read transfer rate in megabytes per second. This value is used to determine the cost of I/O 
during query optimization. The value of number-megabytes-per-second is any numeric literal 
(integer, decimal, or floating point). If this value is not the same for all storage paths, set the 
value to a numeric literal which represents the average for all storage paths that belong to the 
storage group. If the DEVICE READ RATE clause is not specified, the DEVICE READ RATE will be 
set to the built-in default of 100 megabytes per second.

34



Optimizer Environment Awareness

• Buffer pool size

• Sort heap size
• Used by sorts, hash join, index ANDing, hash aggregation and distincting
• Main memory pool used by column-organized processing

• Communications bandwidth
• To factor communication cost into overall cost, in DB partitioned environments

• Remote data source characteristics in a Federated environment

• Concurrency isolation level / locking

• Number of available locks

35

35



Planning and Modelling Predicate Application

• In general, optimizer tries to apply predicates as early as possible
• Filter rows from stream to avoid unnecessary work

• However, some types of predicates can only be applied in certain 
locations during query execution

• There is a hierarchy of predicate application

• The explain facility shows where predicates are applied

36

36



Hierarchy of Predicate Application

Salary > ALL

(SELECT...

FROM...

WHERE...)

Name LIKE 'Lo%'

Residual

Predicates

Search

Arguments

(SARGs)

Runtime 

engine

Data

Manager

Start/stop keys: SSN = '012-34-5678'

Index: (SSN,ID,TXID) Index

Manager

Buffer pages

Index sargable

predicates

i-sarg: TXID = 9965
(applied to all qualifying keys)

Start/stop keys

37

37



38

Cardinality Estimation

• Cardinality = number of rows
• The optimizer estimates the number of rows processed by each 

access plan operator
• Based on the number of rows in the table and the filter factors of 

applied predicates.
• This is the biggest impact on estimated cost!
• Catalog statistics are used to estimate filter factors and cardinality



39

Catalog Statistics

• Statistics are essential for query optimization
• Used to compute access plan cost and cardinality

• Physical characteristic statistics
• E.g. Number of pages in table, number of levels in an index

• Data attribute statistics
• E.g. Number of rows in table, number of distinct values in a column, frequent values, 

quantiles

• Statistics collection methods:
• RUNSTATS command 
• Automatically by Db2

• Enabled using AUTO_RUNSTATS, AUTO_STMT_STATS DB config parameters

• Statistics are stored in the system catalogs
• Visible in SYSSTAT and SYSCAT views:

• TABLES, COLUMNS, INDEXES, COLDIST, COLGROUPS

When the SQL compiler optimizes SQL query plans, its decisions are heavily influenced by statistical information about the size of 
the database tables and indexes. The optimizer also uses information about the distribution of data in specific columns of tables 
and indexes if these columns are used to select rows or join tables. The optimizer uses this information to estimate the costs of 
alternative access plans for each query. Db2 will automatically collect statistics depending on how data changes and the statistical 
needs of queries. Statistics can also be collected manually using the RUNSTATS command. Statistical information is collected for
specific tables, indexes and nicknames. The collected statistics are stored in the system catalog tables and can be queried using the 
SYSSTAT or SYSCAT catalog views.



Catalog Statistics Used by the Optimizer (1|3)
SYSSTAT.TABLES

Name Description

CARD Total number of rows in the table

NPAGES Total number of pages on which the rows of the table exist

FPAGES Total number of pages

MPAGES Total number of pages for table metadata. (Columnar only)

OVERFLOW Total number of overflow records in the table

ACTIVE_BLOCKS Total number of active blocks in the table (MDC or ITC tables)

AVGROWSIZE Average length (in bytes) of both compressed and uncompressed rows 

AVGCOMPRESSEDROWSIZE Average length (in bytes) of compressed rows in this table

AVGROWCOMPRESSIONRATIO Average compression ratio for compressed rows in the table

PCTROWSCOMPRESSED Compressed rows as a percentage of total number of rows in the table

40



Catalog Statistics Used by the Optimizer (2|3)

Name Description

COLCARD Number of distinct values in the column

HIGH2KEY Second-highest data value

LOW2KEY Second-lowest data value

AVGCOLLEN Avg. length in bytes when stored in DB memory or a temporary table

NUMNULLS Number of null values in the column

SUB_COUNT Avg. number of sub-elements in the column (LIKE predicate statistic)

SUB_DELIM_LENGTH Avg. length of delimiters that separate each sub-element (LIKE predicate statistic)

AVGCOLLENCHAR Avg. number of characters based on column collation

PCTENCODED %age encoded values (column-organized table only)

AVGENCODEDCOLLEN Avg. length when stored in DB memory (column-organized table only)

SYSSTAT.COLUMNS

41



Catalog Statistics Used by the Optimizer (3|3)

Name Description

NLEAF Number of leaf pages

NLEVELS Number of index levels

FIRSTKEYCARD Number of distinct first-key values

FIRSTnKEYCARD Number of distinct keys using the first 2-4 columns of the index

FULLKEYCARD Number of distinct values for the full index key

CLUSTERRATIO Degree of data clustering with the index (non-detailed index statistics)

CLUSTERFACTOR Finer measurement of the degree of clustering (detailed index statistics)

SEQUENTIAL_PAGES Number of on-disk leaf pages in index key order with no gaps

DENSITY Ratio of SEQUENTIAL_PAGES to number of prefetched pages (%age)

PAGE_FETCH_PAIRS Data page fetches required for a range of buffer pool sizes

SYSSTAT.INDEXES (not all statistics listed)

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0001072.html

PAGE_FETCH_PAIRS -

A list of pairs of integers, represented in character form. Each pair represents the number of pages in a hypothetical buffer, and the number of 
page fetches required to scan the table with this index using that hypothetical buffer. Zero-length string if no data is available.

42



43

Cardinality Estimation – Local and join predicates

JOIN

SELECT * FROM T1, T2 WHERE T1.x = 7 AND T1.y = T2.y

X   Y

1   A

2   B

2   C

4   D

7   E

7   F

7   G

7   H

9   I

9   J

Y

B

B

D

D

F

F

H

H

J

J

T1 T2

TYPE SEQNO COLVALUE VALCOUNT

F    1     7        4
F    2     9        2

F    3     2        2

SYSSTAT.COLDIST (X)

Selectivity (T1.x = 7): = 4/10
Using frequent value statistics

Selectivity (T1.y = T2.y): 
= 1 / max(colcard(T1.y), colcard(T2.y)) 
= 1 / max(10,5)
= 1/10

Join predicate selectivity assumes:
Inclusion:

All values in T2.y are included in domain of T1.y
Uniformity:

Values are uniformly distributed in both columns

Result cardinality:
= Card(T1) * Card(T2) * sel(T1.x=7) * sel(T1.y=T2.y)
= 10 * 10 * 0.4 * 0.1 
= 4
Actual: 4

Cardinality of T1:        C(T1) = 10

Cardinality of T2:        C(T2) = 10

Column cardinality of T1.Y: CC(T1.Y) = 10

Column cardinality of T2.Y: CC(T2.Y) = 5

Assuming even data distribution, there are the same number of  duplicate values for each distinct value. 

DC1 = C(T1)/CC(T1.Y) = 1

DC2 = C(T2)/CC(T2.Y) = 2

The column cardinality of the join result is min(CC(T1.Y),CC(T2.Y)). i.e. the number of distinct values that can occur in T1.Y and T2.Y after the join 
predicate is applied.

The number of rows returned by the join is the minimal join column cardinality times the number of duplicate values that can occur for each distinct value 
for each join column.

min(CC(T1.Y),CC(T2.Y)) * DC1 * DC2 =

min(CC(T1.Y),CC(T2.Y)) * (C(T1)/CC(T1.Y)) * (C(T2)/CC(T2.Y)) =

min(CC(T1.Y) ,CC(T2.Y))

----------------------------- * C(T1) * C(T2) = 

CC(T1.Y) * CC(T2.Y)

1

---------------------------- * C(T1) * C(T2) 

max(CC(T1.Y),CC(T2.Y))

C(T1) * C(T2) = cardinality of Cartesian product of T1 and T2

1

------------------------------- = selectivity of join predicate

max(CC(T1.Y),CC(T2.Y))



The Explain Facility

• Internal phase of the optimizer that captures critical information used 
in selecting the query access plan

• Access plan information is written to a set of tables

• External tools to format explain table contents:
• Db2 Data Management Console Visual Explain

• GUI to render and navigate query access plans
• Supersedes Data Server Manager Visual Explain

• db2exfmt
• Text-based output from the explain tables
• Command-line interface

44

They show the same 
information

The explain facility is used to display the query access plan chosen by the query optimizer to run an SQL statement. It contains extensive details 

about the relational operations used to run the SQL statement such as the plan operators, their arguments, order of execution, and costs. Since the 

query access plan is one of the most critical factors in query performance, it is important to be able to understand the explain facility output in 

order to diagnose query performance problems.

Explain information is typically used to: 

▪ understand why application performance has changed 

▪ evaluate performance tuning efforts 

44



Db2 Data Management Console Visual Explain

45

45



db2exfmt Rows 

RETURN 

(   1) 

Cost 

I/O

|       

3.87404

NLJOIN

(  13)

125.206 

5

/-------+------\

0.968511                4   

IXSCAN              FETCH  

(  14)              (  15) 

75.0966             100.118

3                   4   

|               /----+---\

4.99966e+06 4        1.99987e+07  

INDEX: TPCD      IXSCAN    TABLE: TPCD 

UXP_NMPK          (  16)   PARTSUPP 

75.1018           

3              

|

1.99987e+07 

INDEX: TPCD.UXPS_PK2KSC

46

Cardinality (rows)

Operator name

(Operator ID)

Cost (timerons)

I/O (pages)

Base table cardinality

46



Explain Facility – Query Graph

• The Query Graph produced by query rewrite can be seen in the 
explain output as the optimized SQL

47

SELECT 

Q8.$C0 AS "total shipping cost", (Q8.$C0 / Q8.$C1) AS "total shipping cost" 

FROM 

(SELECT SUM(Q7.CS_EXT_SHIP_COST), COUNT_BIG(Q7.CS_EXT_SHIP_COST) 

FROM 

(SELECT Q6.CS_EXT_SHIP_COST 

FROM 

(SELECT Q5.CS_EXT_SHIP_COST 

FROM TPCDS.CATALOG_RETURNS AS Q1 

RIGHT OUTER JOIN 

(SELECT Q4.CS_EXT_SHIP_COST, Q4.CS_ORDER_NUMBER 

FROM TPCDS.DATE_DIM AS Q2, TPCDS.CUSTOMER_ADDRESS AS Q3, TPCDS.CATALOG_SALES AS Q4 

WHERE 

('04/01/2001’ <= Q2.D_DATE) AND (Q2.D_DATE <= '05/31/2001') AND 

(Q4.CS_SHIP_DATE_SK = Q2.D_DATE_SK) AND (Q4.CS_SHIP_ADDR_SK = Q3.CA_ADDRESS_SK) AND 

(Q3.CA_STATE = 'NY')

) AS Q5 

ON (Q5.CS_ORDER_NUMBER = Q1.CR_ORDER_NUMBER)

) AS Q6

) AS Q7

) AS Q8

E
X     P

L      A      I
N     I     T     T

O    M    E    N    O    W

SELECT 

Q8.$C0 AS "total shipping cost", (Q8.$C0 / Q8.$C1) AS "total shipping cost" 

FROM 

(SELECT SUM(Q7.CS_EXT_SHIP_COST), COUNT_BIG(Q7.CS_EXT_SHIP_COST) 

FROM 

(SELECT Q6.CS_EXT_SHIP_COST 

FROM 

(SELECT Q5.CS_EXT_SHIP_COST 

FROM TPCDS.CATALOG_RETURNS AS Q1 

RIGHT OUTER JOIN 

(SELECT Q4.CS_EXT_SHIP_COST, Q4.CS_ORDER_NUMBER 

FROM TPCDS.DATE_DIM AS Q2, TPCDS.CUSTOMER_ADDRESS AS Q3, 

TPCDS.CATALOG_SALES AS Q4 

WHERE 

('04/01/2001’ <= Q2.D_DATE) AND (Q2.D_DATE <= '05/31/2001') AND 

(Q4.CS_SHIP_DATE_SK = Q2.D_DATE_SK) AND (Q4.CS_SHIP_ADDR_SK = 

Q3.CA_ADDRESS_SK) AND 

(Q3.CA_STATE = 'NY')

) AS Q5 

ON (Q5.CS_ORDER_NUMBER = Q1.CR_ORDER_NUMBER)

) AS Q6

) AS Q7

) AS Q8

47



John Hornibrook
IBM Canada
jhornibr@ca.ibm.com

48

John is a Senior Technical Staff Member responsible for relational database query optimization on IBM's distributed platforms. This technology 
is part of Db2 for Linux, UNIX and Windows, Db2 Warehouse, Db2 on Cloud, IBM Integrated Analytics System (IIAS) and Db2 Big SQL. John also 
works closely with users to help them fully realize the benefits of IBM's relational DB technology products. 

48


