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Agenda
• Motivation

• AI Query Optimizer 
(Db2 v12.1)

• (AI) Query Tuner 
(Coming Soon)
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The Query Optimizer

Parser

Query Graph

SQL

Query Optimizer

Execution Engine

Rewrites the query graph for performance

Estimates the number of rows for each operator

Estimates the costs of each operator

Generates alternate subplans

Selects the cheapest overall plan

Sends it to the execution engine



Cardinality Estimation

• Cardinality is the number of rows input to or output from an operator

• Generally reduced by predicates (increased with expanding joins)

• Traditionally estimated using statistics

• Predicate columns are generally assumed to be independent

• Errors of many orders of magnitude can occur due to skew and correlation

•     How can we improve cardinality estimates?



Improving Cardinality Estimates

                    1136
                    HSJOIN
                    (   4)
                      |
           /---------+---------\

     2,000,000               1136
       TBSCAN               HSJOIN
       (   5)                  (   6)
          |               /-------+-------\

     2,000,000    287,997,000     0.288374
     CUSTOMER TBSCAN      TBSCAN
         Q1    (   7)           (   8)
                       |                   |

                   287,997,000       73049

                STORE_SALES  DATE_DIM
                         Q3                Q2

10,000X off ! 
       457723
               HSJOIN
               (   4)
                  |
        /---------+---------\

   2,000,000             457723
    TBSCAN HSJOIN
     (   5)                (   6)
     |               /-------+-------\

   2,000,000    287,997,000       116.099
   CUSTOMER    TBSCAN         TBSCAN
        Q1         (   7)            (   8)
                      |                |   
                287,997,00          73049

              STORE_SALES    DATE_DIM
                     Q3               Q2

         

                       9,053,830
                             HSJOIN
                             (   4)
                                |
                     /---------+----------\

            9,053,830         2,000,00

                 HSJOIN             TBSCAN
                 (   5)                   (   8)
            /-------+-------\                |

     287,997,000     116.099 2,000,000

       TBSCAN        TBSCAN   CUSTOMER
       (   6)              (   7)           Q1                                   
           |                   |
     287,997,000        73049

 STORE_SALES   DATE_DIM
         Q3                  Q2

Default Statistics With additional 
Column Group Statistics

With additional 
Statistical Views

20X off !


☺
Close

Actual : 10,113,972



Tuning is Difficult

• What Column Group Statistics should one collect?

• What are Statistical Views and how does one create one that will 
improve performance for the query?

• Would an index improve performance and what columns should 
one define that index on?

• These are tasks for the AI Query Tuner .
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Evolution of Query Optimizer Model

Based on 

Heuristics

Based on 

Statistics

Based on 

AI
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Can AI do Better?

Optimizer Challenges 

Development 
Effort Tuning EffortPerformance 

Stability

AI Query Optimizer Goals

Achieve 
Reliable 

Performance

Simplify 
Optimizer 

Development

Automate 
Everything

Adapt to User 
Workloads

Learn from 
Optimizer and 

Runtime 
feedback

Adapt to User 
Data

Customization Benefits

Join 
Cardinality 
Estimation

Query Rewrite,
Tuning,

Other aspects 
…

Local 
Predicate 

Cardinality 
Estimation

Infuse AI Gradually



Our First Prototype in 2013
Research Paper Published in 2015
• “Cardinality Estimation Using Neural Networks” CASCON 2015: 53-59. 

Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, Calisto Zuzarte
• https://dl.acm.org/citation.cfm?id=2886453

Input Layer

Output Layer

Hidden Layer

☺ 
Me

Output Layer

https://dblp.org/db/conf/cascon/cascon2015.html


Training the Model 

Model Discovery

Finds correlated 
pairs of columns to 
limit training time

Generate training 
Queries 

Sample of data used 
to generate queries 
and selectivity labels

Create, Train and 
Store the Model

Model Ready 
for Use By The 

Optimizer

AUTO 
RUNSTATS

Average Training 
Time is ~38s

Average Model 
Size is ~40Kb

Trains with about
1 Million Queries!



How Does a Neural Network Machine Learning Cardinality 
Estimation Model Work?



Retraining a Model

• WHEN
• With enough data changes, Statistics and Model retraining is triggered.

• HOW
• Drive model discovery/training again
• Create a brand-new model instead of fine-tuning an existing model
• Previously discovered correlated columns are preserved
• New correlations are added
• Retrained model is stored as a new record in the catalog
• Old model is still present, we always keep two records for REVERT usage



Using the Model 

Model Loaded in 
the Cache

Optimizer Calls 
Model API

Model Predicts 
Selectivity

Optimizer Uses 
the Selectivity

Query 
Compiler



Model Visualization 



Predicate Support

• Supported: Local predicates with

• Equality
• Range
• BETWEEN
• IN
• OR
• LIKE with supported patterns 

such as no wildcards (=) or a 
trailing wildcard only

• Not yet supported

• Equality join predicates 
• Multi-column and non-equality 

join predicates
• Predicates with host variables or 

parameter markers not using 
REOPT

• Predicates with expressions 
around the columns



Predicate Examples

SELECT * FROM T1, T2
WHERE

T1.C1 = ‘abc’ AND
T1.C6 IN (5, 3, 205) AND
T1.C2 BETWEEN 5 AND 10 AND
T2.C3 <= 120 AND
((T1.C4 > 5 AND T1.C5 < 20) OR

 (T1.C4 < 2 AND T1.C5 = 100)) 
AND
   T1.C5 LIKE ‘string%’ AND

T1.C0 = T2.C0 AND
T1.C3 = ? AND
MOD(T1.C4, 10) = 1



Where the Model Does Exceptionally Well

SELECT 
      GUEST_LAST_NAME, 
       ARRIVAL_DATE, 
       DEPARTURE_DATE 
FROM
       HOTEL_DB
WHERE 
       (ARRIVAL_DATE <= ‘2019-12-25’ and   
        DEPARTURE_DATE >= ‘2019-12-25’) OR
       (ARRIVAL_DATE <= ‘2018-12-25’ and 
        DEPARTURE_DATE >= ‘2018-12-25’) OR
       (ARRIVAL_DATE <= ‘2017-12-25’ and
        DEPARTURE_DATE >= ‘2017-12-25’) 

SELECT 
     GUEST_LAST_NAME,   
     ARRIVAL_DATE, 
     DEPARTURE_DATE 
FROM 
    HOTEL_DB
WHERE 
    DATE_C BETWEEN 
        ‘2019-08-01’ and ‘2019-08-31’ AND
    COMPANY = ‘IBM’

Correlation between 
columns involved in  
multiple range 
predicates

Correlation between 
equality predicates 
and range 
predicates



Storage, Retrieval and Model Information

• New catalog table SYSIBM.SYSAIMODELS

• Catalog cache. Only most recent version of each model is cached

• SYSIBM.SYSDEPENDENCIES. Useful for looking up models based on 
the table name and vice versa

• Looking up details of the model:

SELECT MODELSCHEMA, MODELNAME, CREATE_TIME, TABCOLUMNS, ISENABLED, VERSION 
FROM SYSCAT.AIOPT_TABLECARDMODELS 
WHERE TABNAME = ‘T1’;



Turning on the AI Optimizer

• The AI Optimizer is automatically turned on for newly created 
databases

• For existing databases, the AI optimizer can be turned on as follows:
• New settings under AUTO_MAINT

• Automatic maintenance   (AUTO_MAINT) = ON
•  Automatic AI maintenance   (AUTO_AI_MAINT) = ON
•  AI Optimizer     (AUTO_AI_OPTIMIZER) = OFF                        
•  Automatic Model Discovery     (AUTO_MODEL_DISCOVER) = ON

• Turning on the AI Optimizer
• db2 update db cfg for <dbname> using AUTO_AI_OPTIMIZER ON



Comparing Estimates with the Traditional 
Optimizer
• A switch is available to see the difference in the estimates using 

the model versus the estimates in the traditional optimizer

• db2set DB2_SELECTIVITY=MODEL_PRED_SEL ON
• db2set DB2_SELECTIVITY=MODEL_PRED_SEL OFF

• Can be embedded as a guideline or profile to control the use of 
models on a per query basis

• This is a good way of comparing estimates without dropping a 
model



DDL : In Case of an Emergency

DROP MODEL 

• Will drop models

ALTER MODEL 

• Will alter the model

• ENABLE/DISABLE 
controls model 
training and usage

REVERT MODEL

• Swaps the most 
recent model with an 
older model
REVERT 
MODEL

REVERT 
MODEL



Entries Added to the Statistics Log
2022-03-11-12.06.49.326064-480 I532207E727           LEVEL: Event

…

DISCOVER: TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.49.325975" : BY 
"Asynchronous" : start
OBJECT  : Object name with schema, 34 bytes

MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO

IMPACT  : None

DATA #1 : String, 18 bytes

Automatic Runstats

2022-03-11-12.06.49.328033-480 I532935E871           LEVEL: Event

…

DISCOVER: TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.49.327990" : BY 

"Asynchronous" : success
OBJECT  : Object name with schema, 34 bytes

MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO

IMPACT  : None

DATA #1 : String, 18 bytes

Automatic Runstats

DATA #2 : String, 113 bytes

TABLE CARDINALITY MODEL ON "MLO_DBCFG_ENG_RANGE"."MIXEDDATA_AUTO" ON COLUMNS ("DISTCOL", "INTCOL1", "INTCOL2")



Entries Added to the Statistics Log 
(continued)
2022-03-11-12.06.49.329270-480 I534521E882           LEVEL: Event
…
TRAIN   : TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.49.329230" : BY "Asynchronous" : start
OBJECT  : Object name with schema, 34 bytes
MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO
IMPACT  : None
DATA #1 : String, 18 bytes
Automatic Runstats
DATA #2 : String, 113 bytes
TABLE CARDINALITY MODEL ON "MLO_DBCFG_ENG_RANGE"."MIXEDDATA_AUTO" ON COLUMNS ("DISTCOL", "INTCOL1", "INTCOL2")

2022-03-11-12.06.54.367094-480 I535404E742           LEVEL: Event
…
TRAIN   : TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.54.367035" : BY "Asynchronous" : 
success
OBJECT  : Object name with schema, 34 bytes
MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO
IMPACT  : None
DATA #1 : String, 18 bytes
Automatic Runstats
DATA #2 : String, 1174 bytes
Model metrics: Rating: 3 (Very good), Table samples: 33 (33), Flags: 0x0, Training time: 5059 (1/20/11/0), Validation MSE: 
0.000424, Accuracy bucket counts: 0,791,4665,1213,0, Accuracy bucket means: 0.000000,-1.244713,-0.080033,1.228198,0.000000
Table column cardinalities: 10,10,10
Sample column cardinalities: 10,10,10
Sample column mappings: 10,10,10
Column flags: 00000000,00000000,00000000
Base algorithm metrics: Training metric: 0.000413, Validation metric: 0.000426, Previous validation metric: 0.000428, Pre-
training validation metric: 0.001477, Used training iterations: 21, Configured training iterations: 39, Training set size: 
66695, Pre-training time: 430, Training time: 2544, Accuracy bucket counts: 0,878,4578,1213,0, Accuracy bucket means: 
0.000000,-1.232078,-0.063045,1.228198,0.000000
Low selectivity algorithm metrics: Training metric: 0.000000, Validation metric: 0.000020, Previous validation metric: 
0.000000, Pre-training validation metric: 0.000002, Used training iterations: 36, Configured training iterations: 44, 
Training set size: 38031, Pre-training time: 163, Training time: 2483, Accuracy bucket counts: 2,5,2910,0,0, Accuracy 
bucket means: -2.000233,-1.999801,0.058431,0.000000,0.000000



Model Policies

• Configure which tables can have models
• Model policies will still allow automatic statistics collection
• Model policies do not affect model retraining
• Auto-runstats policies will impact model discovery and training

<Db2AutoAiOptPolicy>
 <ModelDiscoveryTableScope modelType='TableCardModel'>

 <FilterCondition>

       WHERE (TABSCHEMA,TABNAME) NOT IN (VALUES ’TPCDS’,’STORE_SALES’))

    </FilterCondition>
 </ModelDiscoveryTableScope>

</Db2AutoAiOptPolicy>



EXPLAIN (db2exfmt)

• Source for the cardinality estimation is 
a model

• the list of predicates the model 
computed the combined selectivity for

• Model information will also be listed in 
the “objects used” and includes the 
columns the model was trained on

• Each area will also show the model 
schema and name



Cardinality Estimation Accuracy

Closer to 0
Is better

Thinner Box 
Plot is better



Real world Problem Queries

3X faster in scenarios 
simulated in-house

The average benefit will 
depend on the workload 
and prior tuning

The goal is to get reliable 
performance



(AI) Query Tuner
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What is the AI Query Tuner?

• Simplifying database and query performance tuning is critical with a 
shortage of highly skilled DBAs increasing database sizes query 
complexity 

• The DBA Assistant (DBAssist) is an AI-powered tool designed for DBAs 
that provides insights and smart recommendations through a natural 
language chat interface. 

• DBAssist is trained on a wide knowledge base and database telemetry, 
to streamline information retrieval and quickly help answer questions 
and troubleshoot problems on your database systems. 

• The Query Tuner is a recommendation agent within the engine available 
for DBAssist to consume. 



DBAssist

DBAssist

AI Query Tuner



Tuning for Performance

• Plan to develop AI models to generate recommendations for 
• Single query analysis
• Workload analysis

• Near term – Explain Analyzer Model
• Current workload recommendation functionality available through the 

db2 advisor, such as with index recommendations, will be leveraged as a 
first step.
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