
AI Query Optimizer and
Query Tuner

Calisto Zuzarte
2025-03-13

calisto@ca.ibm.com
Tridex NY

mailto:calisto@ca.ibm.com

Agenda
• Motivation

• AI Query Optimizer
(Db2 v12.1)

• (AI) Query Tuner
(Coming Soon)

AI

ML

NN

LLM

Motivation

3

The Query Optimizer

Parser

Query Graph

SQL

Query Optimizer

Execution Engine

Rewrites the query graph for performance

Estimates the number of rows for each operator

Estimates the costs of each operator

Generates alternate subplans

Selects the cheapest overall plan

Sends it to the execution engine

Cardinality Estimation

• Cardinality is the number of rows input to or output from an operator

• Generally reduced by predicates (increased with expanding joins)

• Traditionally estimated using statistics

• Predicate columns are generally assumed to be independent

• Errors of many orders of magnitude can occur due to skew and correlation

• How can we improve cardinality estimates?

Improving Cardinality Estimates

 1136
 HSJOIN
 (4)
 |
 /---------+---------\

 2,000,000 1136
 TBSCAN HSJOIN
 (5) (6)
 | /-------+-------\

 2,000,000 287,997,000 0.288374
 CUSTOMER TBSCAN TBSCAN
 Q1 (7) (8)
 | |

 287,997,000 73049

 STORE_SALES DATE_DIM
 Q3 Q2

10,000X off !
 457723
 HSJOIN
 (4)
 |
 /---------+---------\

 2,000,000 457723
 TBSCAN HSJOIN
 (5) (6)
 | /-------+-------\

 2,000,000 287,997,000 116.099
 CUSTOMER TBSCAN TBSCAN
 Q1 (7) (8)
 | |
 287,997,00 73049

 STORE_SALES DATE_DIM
 Q3 Q2

 9,053,830
 HSJOIN
 (4)
 |
 /---------+----------\

 9,053,830 2,000,00

 HSJOIN TBSCAN
 (5) (8)
 /-------+-------\ |

 287,997,000 116.099 2,000,000

 TBSCAN TBSCAN CUSTOMER
 (6) (7) Q1
 | |
 287,997,000 73049

 STORE_SALES DATE_DIM
 Q3 Q2

Default Statistics With additional
Column Group Statistics

With additional
Statistical Views

20X off !

☺
Close

Actual : 10,113,972

Tuning is Difficult

• What Column Group Statistics should one collect?

• What are Statistical Views and how does one create one that will
improve performance for the query?

• Would an index improve performance and what columns should
one define that index on?

• These are tasks for the AI Query Tuner .

AI Query
Optimizer

8

Evolution of Query Optimizer Model

Based on

Heuristics

Based on

Statistics

Based on

AI

Query
Optimization

#IBMTechXchange 10

Can AI do Better?

Optimizer Challenges

Development
Effort Tuning EffortPerformance

Stability

AI Query Optimizer Goals

Achieve
Reliable

Performance

Simplify
Optimizer

Development

Automate
Everything

Adapt to User
Workloads

Learn from
Optimizer and

Runtime
feedback

Adapt to User
Data

Customization Benefits

Join
Cardinality
Estimation

Query Rewrite,
Tuning,

Other aspects
…

Local
Predicate

Cardinality
Estimation

Infuse AI Gradually

Our First Prototype in 2013
Research Paper Published in 2015
• “Cardinality Estimation Using Neural Networks” CASCON 2015: 53-59.

Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, Calisto Zuzarte
• https://dl.acm.org/citation.cfm?id=2886453

Input Layer

Output Layer

Hidden Layer

☺
Me

Output Layer

https://dblp.org/db/conf/cascon/cascon2015.html

Training the Model

Model Discovery

Finds correlated
pairs of columns to
limit training time

Generate training
Queries

Sample of data used
to generate queries
and selectivity labels

Create, Train and
Store the Model

Model Ready
for Use By The

Optimizer

AUTO
RUNSTATS

Average Training
Time is ~38s

Average Model
Size is ~40Kb

Trains with about
1 Million Queries!

How Does a Neural Network Machine Learning Cardinality
Estimation Model Work?

Retraining a Model

• WHEN
• With enough data changes, Statistics and Model retraining is triggered.

• HOW
• Drive model discovery/training again
• Create a brand-new model instead of fine-tuning an existing model
• Previously discovered correlated columns are preserved
• New correlations are added
• Retrained model is stored as a new record in the catalog
• Old model is still present, we always keep two records for REVERT usage

Using the Model

Model Loaded in
the Cache

Optimizer Calls
Model API

Model Predicts
Selectivity

Optimizer Uses
the Selectivity

Query
Compiler

Model Visualization

Predicate Support

• Supported: Local predicates with

• Equality
• Range
• BETWEEN
• IN
• OR
• LIKE with supported patterns

such as no wildcards (=) or a
trailing wildcard only

• Not yet supported

• Equality join predicates
• Multi-column and non-equality

join predicates
• Predicates with host variables or

parameter markers not using
REOPT

• Predicates with expressions
around the columns

Predicate Examples

SELECT * FROM T1, T2
WHERE

T1.C1 = ‘abc’ AND
T1.C6 IN (5, 3, 205) AND
T1.C2 BETWEEN 5 AND 10 AND
T2.C3 <= 120 AND
((T1.C4 > 5 AND T1.C5 < 20) OR

 (T1.C4 < 2 AND T1.C5 = 100))
AND
 T1.C5 LIKE ‘string%’ AND

T1.C0 = T2.C0 AND
T1.C3 = ? AND
MOD(T1.C4, 10) = 1

Where the Model Does Exceptionally Well

SELECT
 GUEST_LAST_NAME,
 ARRIVAL_DATE,
 DEPARTURE_DATE
FROM
 HOTEL_DB
WHERE
 (ARRIVAL_DATE <= ‘2019-12-25’ and
 DEPARTURE_DATE >= ‘2019-12-25’) OR
 (ARRIVAL_DATE <= ‘2018-12-25’ and
 DEPARTURE_DATE >= ‘2018-12-25’) OR
 (ARRIVAL_DATE <= ‘2017-12-25’ and
 DEPARTURE_DATE >= ‘2017-12-25’)

SELECT
 GUEST_LAST_NAME,
 ARRIVAL_DATE,
 DEPARTURE_DATE
FROM
 HOTEL_DB
WHERE
 DATE_C BETWEEN
 ‘2019-08-01’ and ‘2019-08-31’ AND
 COMPANY = ‘IBM’

Correlation between
columns involved in
multiple range
predicates

Correlation between
equality predicates
and range
predicates

Storage, Retrieval and Model Information

• New catalog table SYSIBM.SYSAIMODELS

• Catalog cache. Only most recent version of each model is cached

• SYSIBM.SYSDEPENDENCIES. Useful for looking up models based on
the table name and vice versa

• Looking up details of the model:

SELECT MODELSCHEMA, MODELNAME, CREATE_TIME, TABCOLUMNS, ISENABLED, VERSION
FROM SYSCAT.AIOPT_TABLECARDMODELS
WHERE TABNAME = ‘T1’;

Turning on the AI Optimizer

• The AI Optimizer is automatically turned on for newly created
databases

• For existing databases, the AI optimizer can be turned on as follows:
• New settings under AUTO_MAINT

• Automatic maintenance (AUTO_MAINT) = ON
• Automatic AI maintenance (AUTO_AI_MAINT) = ON
• AI Optimizer (AUTO_AI_OPTIMIZER) = OFF
• Automatic Model Discovery (AUTO_MODEL_DISCOVER) = ON

• Turning on the AI Optimizer
• db2 update db cfg for <dbname> using AUTO_AI_OPTIMIZER ON

Comparing Estimates with the Traditional
Optimizer
• A switch is available to see the difference in the estimates using

the model versus the estimates in the traditional optimizer

• db2set DB2_SELECTIVITY=MODEL_PRED_SEL ON
• db2set DB2_SELECTIVITY=MODEL_PRED_SEL OFF

• Can be embedded as a guideline or profile to control the use of
models on a per query basis

• This is a good way of comparing estimates without dropping a
model

DDL : In Case of an Emergency

DROP MODEL

• Will drop models

ALTER MODEL

• Will alter the model

• ENABLE/DISABLE
controls model
training and usage

REVERT MODEL

• Swaps the most
recent model with an
older model
REVERT
MODEL

REVERT
MODEL

Entries Added to the Statistics Log
2022-03-11-12.06.49.326064-480 I532207E727 LEVEL: Event

…

DISCOVER: TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.49.325975" : BY
"Asynchronous" : start
OBJECT : Object name with schema, 34 bytes

MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO

IMPACT : None

DATA #1 : String, 18 bytes

Automatic Runstats

2022-03-11-12.06.49.328033-480 I532935E871 LEVEL: Event

…

DISCOVER: TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.49.327990" : BY

"Asynchronous" : success
OBJECT : Object name with schema, 34 bytes

MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO

IMPACT : None

DATA #1 : String, 18 bytes

Automatic Runstats

DATA #2 : String, 113 bytes

TABLE CARDINALITY MODEL ON "MLO_DBCFG_ENG_RANGE"."MIXEDDATA_AUTO" ON COLUMNS ("DISTCOL", "INTCOL1", "INTCOL2")

Entries Added to the Statistics Log
(continued)
2022-03-11-12.06.49.329270-480 I534521E882 LEVEL: Event
…
TRAIN : TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.49.329230" : BY "Asynchronous" : start
OBJECT : Object name with schema, 34 bytes
MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO
IMPACT : None
DATA #1 : String, 18 bytes
Automatic Runstats
DATA #2 : String, 113 bytes
TABLE CARDINALITY MODEL ON "MLO_DBCFG_ENG_RANGE"."MIXEDDATA_AUTO" ON COLUMNS ("DISTCOL", "INTCOL1", "INTCOL2")

2022-03-11-12.06.54.367094-480 I535404E742 LEVEL: Event
…
TRAIN : TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.54.367035" : BY "Asynchronous" :
success
OBJECT : Object name with schema, 34 bytes
MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO
IMPACT : None
DATA #1 : String, 18 bytes
Automatic Runstats
DATA #2 : String, 1174 bytes
Model metrics: Rating: 3 (Very good), Table samples: 33 (33), Flags: 0x0, Training time: 5059 (1/20/11/0), Validation MSE:
0.000424, Accuracy bucket counts: 0,791,4665,1213,0, Accuracy bucket means: 0.000000,-1.244713,-0.080033,1.228198,0.000000
Table column cardinalities: 10,10,10
Sample column cardinalities: 10,10,10
Sample column mappings: 10,10,10
Column flags: 00000000,00000000,00000000
Base algorithm metrics: Training metric: 0.000413, Validation metric: 0.000426, Previous validation metric: 0.000428, Pre-
training validation metric: 0.001477, Used training iterations: 21, Configured training iterations: 39, Training set size:
66695, Pre-training time: 430, Training time: 2544, Accuracy bucket counts: 0,878,4578,1213,0, Accuracy bucket means:
0.000000,-1.232078,-0.063045,1.228198,0.000000
Low selectivity algorithm metrics: Training metric: 0.000000, Validation metric: 0.000020, Previous validation metric:
0.000000, Pre-training validation metric: 0.000002, Used training iterations: 36, Configured training iterations: 44,
Training set size: 38031, Pre-training time: 163, Training time: 2483, Accuracy bucket counts: 2,5,2910,0,0, Accuracy
bucket means: -2.000233,-1.999801,0.058431,0.000000,0.000000

Model Policies

• Configure which tables can have models
• Model policies will still allow automatic statistics collection
• Model policies do not affect model retraining
• Auto-runstats policies will impact model discovery and training

<Db2AutoAiOptPolicy>
 <ModelDiscoveryTableScope modelType='TableCardModel'>

 <FilterCondition>

 WHERE (TABSCHEMA,TABNAME) NOT IN (VALUES ’TPCDS’,’STORE_SALES’))

 </FilterCondition>
 </ModelDiscoveryTableScope>

</Db2AutoAiOptPolicy>

EXPLAIN (db2exfmt)

• Source for the cardinality estimation is
a model

• the list of predicates the model
computed the combined selectivity for

• Model information will also be listed in
the “objects used” and includes the
columns the model was trained on

• Each area will also show the model
schema and name

Cardinality Estimation Accuracy

Closer to 0
Is better

Thinner Box
Plot is better

Real world Problem Queries

3X faster in scenarios
simulated in-house

The average benefit will
depend on the workload
and prior tuning

The goal is to get reliable
performance

(AI) Query Tuner

3
0

What is the AI Query Tuner?

• Simplifying database and query performance tuning is critical with a
shortage of highly skilled DBAs increasing database sizes query
complexity

• The DBA Assistant (DBAssist) is an AI-powered tool designed for DBAs
that provides insights and smart recommendations through a natural
language chat interface.

• DBAssist is trained on a wide knowledge base and database telemetry,
to streamline information retrieval and quickly help answer questions
and troubleshoot problems on your database systems.

• The Query Tuner is a recommendation agent within the engine available
for DBAssist to consume.

DBAssist

DBAssist

AI Query Tuner

Tuning for Performance

• Plan to develop AI models to generate recommendations for
• Single query analysis
• Workload analysis

• Near term – Explain Analyzer Model
• Current workload recommendation functionality available through the

db2 advisor, such as with index recommendations, will be leveraged as a
first step.

	Slide 1: AI Query Optimizer and Query Tuner
	Slide 2: Agenda
	Slide 3: Motivation
	Slide 4: The Query Optimizer
	Slide 5: Cardinality Estimation
	Slide 6: Improving Cardinality Estimates
	Slide 7: Tuning is Difficult
	Slide 8: AI Query Optimizer
	Slide 9: Evolution of Query Optimizer Model
	Slide 10: Can AI do Better?
	Slide 11: Our First Prototype in 2013 Research Paper Published in 2015
	Slide 12: Training the Model
	Slide 13
	Slide 14: Retraining a Model
	Slide 15: Using the Model
	Slide 16: Model Visualization
	Slide 17: Predicate Support
	Slide 18: Predicate Examples
	Slide 19: Where the Model Does Exceptionally Well
	Slide 20: Storage, Retrieval and Model Information
	Slide 21: Turning on the AI Optimizer
	Slide 22: Comparing Estimates with the Traditional Optimizer
	Slide 23: DDL : In Case of an Emergency
	Slide 24: Entries Added to the Statistics Log
	Slide 25: Entries Added to the Statistics Log (continued)
	Slide 26: Model Policies
	Slide 27: EXPLAIN (db2exfmt)
	Slide 28: Cardinality Estimation Accuracy
	Slide 29: Real world Problem Queries
	Slide 30: (AI) Query Tuner
	Slide 31: What is the AI Query Tuner?
	Slide 32: DBAssist
	Slide 33: Tuning for Performance

