
Session code:

Adaptive Workload Management in Db2 Warehouse

David Kalmuk

IBM
D10

Wednesday November 7th, 9:40am Db2 for Linux, Unix, Windows

Please Note:

• IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without

notice at IBM’s sole discretion.

• Information regarding potential future products is intended to outline our general product direction and it

should not be relied on in making a purchasing decision.

• The information mentioned regarding potential future products is not a commitment, promise, or legal

obligation to deliver any material, code or functionality. Information about potential future products may

not be incorporated into any contract.

• The development, release, and timing of any future features or functionality described for our products

remains at our sole discretion.

• Performance is based on measurements and projections using standard IBM benchmarks in a controlled

environment. The actual throughput or performance that any user will experience will vary depending

upon many factors, including considerations such as the amount of multiprogramming in the user’s job

stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no

assurance can be given that an individual user will achieve results similar to those stated here.

2

Objectives

• Learn about the new Adaptive Workload Management technology

and how it automatically manages scheduling and execution of your

workload to ensure stability and maximize performance.

• Learn how you can easily assign system resource targets to different

workloads to ensure they can meet their performance goals.

• Learn how to monitor your workload performance, activity, and

resource consumption to ensure they are meeting their objectives.

Agenda

• Workload Management Basics and the Db2 Workload Manager

• The Challenge of Modern Analytic Workloads

• Db2’s New Adaptive Workload Management Technology

• The Adaptive WLM User Model

Workload Management Goals for a Database System

• Ensure System Stability and Responsiveness
• Don’t overcommit the system but ensure it’s well utilized

• Schedule jobs appropriately to ensure fairness and appropriate responsiveness

• Workload Prioritization / Isolation
• Allow resources to be subdivided between workloads for prioritization / isolation purposes

• Workload Governance and Monitoring
• Allow definition of rules to govern workloads / detect and abort rogue jobs

• Allow workload level monitoring

Db2 Workload Manager

• A mature and highly customizable set of capabilities for workload management
• Classification, mapping, concurrency control, governance thresholds, resource control

• View it as a framework with a comprehensive set of ‘tools’ for DIY workload

management
• Construct nearly any workload management setup you can imagine

• WLM Best Practices provide a template for building a recommended

configurations for managing a warehouse environment
• Further refinements add scenarios for isolation, prioritization, production shifts

The Db2 Workload Manager Menu

Domain Options

Workload Classification WORKLOAD

Workload Prioritization SERVICE CLASS

Job Classification WORK CLASS / WORK ACTION SET

Remapping THRESHOLD

Job Prioritization SERVICE SUBCLASS

Admission + Resource Control Concurrency THRESHOLD

CPU LIMIT + SHARE

PREFETCH + BUFFERPOOL PRIORITY

Governance Predictive + Reactive THRESHOLD

Monitoring SQL Functions (Workload, Service class)

Event Monitors (Statistics, Activity)

Db2 WLM Best Practices Configuration Lifecycle

Classify
Jobs

Apply
Controls

Monitor

Adjust

Classify

Workloads

Create Workloads
Create Work Class / Action Sets

Create Service Subclasses

Create Remapping Thresholds

Create Concurrency Thresholds

Assign CPU Shares + Limits

Create Reactive Thresholds

Best Practice Template

Adjust Work Class Set Timeron Ranges

Adjust Concurrency Thresholds

Adjust Remapping Thresholds

Adjust Reactive Thresholds

Iterative

Tuning +

Maintenance

Workload Variation

Workload Changes

System Stability BP Configuration

User Requests

Default
Workload

Service Super Class

Default Subclass

LOAD

Simple DML

Medium DML

Complex DML

Minor DML

Trivial DML

Query
Cost?

b < Timeron Cost <= c Concurrency Limit = y

c < Timeron Cost <= d Concurrency Limit = z

d < Timeron Cost <= e Concurrency Limit = q

e < Timeron Cost <= e Concurrency Limit = r

f < Timeron Cost <= f Concurrency Limit = s

Work action set
timeron costs
subdivide work into
“lanes” based on
cost for tiered job
scheduling to
provide consistent
throughput

Subclass
concurrency limits
control mix of work
and overall
admission

Concurrency Limit = x

a < Timeron Cost <= b

Balance
total work,
division
between
subclasses

Prioritization BP Configuration

10

Workload A

Workload B

Workload C

Default workload

Workload D
2000 (Soft)Query

Cost?

3000 (Hard)

1000 (Soft)

User Requests

4000 (Hard)

2000 (Hard)

Service Superclasses

2000 (Soft)Query
Cost?

3000 (Hard)

1000 (Soft)

4000 (Hard)

2000 (Hard)

Application A

Application B

Application A

Application B

Reactive thresholds
abort runaway
queries

7000 (Hard)

3000 (Hard)

d < Timeron Cost <= e

a < Timeron Cost <= b

c < Timeron Cost <= d

b < Timeron Cost <= c

Work action set
timeron costs
subdivide work into
“lanes” based on cost
for tiered job
scheduling

CPU shares control
division of CPU
between superclasses
and subclasses

Concurrency Limit = w

Concurrency Limit = x

Concurrency Limit = z

Concurrency Limit = y

Concurrency Limit = w’

Concurrency Limit = x’

Concurrency Limit = z’

Concurrency Limit = y’

Subclass concurrency
limits control mix of
work and overall
superclass admission

d’ < Timeron Cost <= e’

a’ < Timeron Cost <= b’

c’ < Timeron Cost <= d’

b’ < Timeron Cost <= c’

e < Timeron Cost <= f

e’ < Timeron Cost <= f’

Balance total
work, division
between
superclasses,

division
between
subclasses

Default BLU ANALYTICS Stability Configuration

11

150000 < Timeron Cost

Work action set
timeron costs
subdivide work into
unmanaged vs.
managed work

Subclass concurrency
limits number of heavy
jobs in the system
(pre-configured)

Concurrency Limit = N

0 < Timeron Cost <= 150000

User Requests

Default
Workload

Default User Service Class

Default Subclass

Default
“Managed”
Subclass

Cost?

Query Costs and Concurrency Limits

• Maintaining this type of WLM configuration involves manual processes that can be

fairly labor intensive

• The underlying reason is that both query cost ranges and concurrency limits are lower

level and indirect controls over what we are actually trying to manage
• Query cost = Use estimate of query complexity to differentiate based on response time

• Concurrency limit = Control resource consumption for jobs in a particular class via fixed limit

• Most database vendors use similar techniques with similar complexities - why?
• Eg. “Concurrency thresholds”, “Throttles”, “Slots”, ”Queues”, “Memory limits”, etc.

• Predicting response times and resource consumption accurately enough to be

actionable is hard!

• Fixed limits are much easier to implement from a technology perspective.

12

The Challenge of Modern Analytic Workloads

• Diverse range of jobs from miniscule point lookups to massive analytic

queries

• Highly dynamic workloads combining
• High volumes of operational point queries

• Concurrent complex analytic queries of varying shapes and sizes

• Continuous data ingest

• With in-memory column store technologies fixed resources like memory

become the limiting factor vs. CPU
• Much less forgiving if system gets overcommitted

• For these types of workloads configurations based on fixed limits are

necessarily sub-optimal and difficult to tune

13

Trying to tune a mixed workload configuration…

Default
Workload

Service Super Class

Default Subclass

Medium DML

Ingest

Complex DML

Query
Cost?

Concurrency Limit = ??0 < Timeron Cost <= ??

For response time
< 30 seconds target
20% resources

Concurrency Limit = ???? < Timeron Cost <= ??

Concurrency Limit = ???? < Timeron Cost <= ??

Concurrency Limit = ??

For response time
< 600 seconds
target 20%
resources

For response time
> 600 seconds
target 30%
resources

For ingest target
30% of resources

Indirect controls; onus is
on the user to derive,
apply, and adjust to
maintain appropriate
fixed limits.

The problem…

15

I can take 4!

Db2’s New Adaptive Workload Management

Db2’s New Adaptive Workload Management Technology

• Admission based on query resource footprint and fit rather than fixed

concurrency limits
• Adjusts admission implicitly based on the workload without manual tuning

• More intelligent job scheduling makes more efficient use of system resources

• Improved performance for concurrent workloads

• Resources to be considered by adaptive admission control
• Sort memory (aka query working memory)

• Key resource bottleneck for BLU column store

• CPU load impact / number of threads
• Control admission to target a healthy CPU load based on expected query degree

• Initially available in Db2 Warehouse on Cloud, Db2 Warehouse, IIAS
• Db2 software support will follow

17

Adaptive Workload Management Benefits

• Deliver true automatic workload management out of the box

with zero tuning

• Removes need to configure + tune fixed concurrency limits

• Improved stability and performance

• Enables much simpler and more powerful admission models
18

Mixed Workload Configuration under Adaptive WLM

Default
Workload

Service Super Class

Default Subclass

Medium DML

Ingest

Complex DML

Query
Cost?

Resource Share 20%0 < Time Estimate <= 30s

For response time
< 30 seconds target
20% resources

30s < Time Estimate <= 600s

600s < Time Estimate <= INF

For response time
< 300 seconds
target 20%
resources

For response time
> 300 seconds
target 30%
resources

For ingest target
30% of resources

Resource Share 20%

Direct targets; onus is on
the system to manage
system and constantly
adjust behavior to meet
targets (innovation required)

Resource Share 30%

Resource Share 30%

Current Automatic WLM

• Cost evaluation includes only “timeron”

estimate

• Open ended (no feedback)

• Scheduling based on static concurrency

threshold

New Adaptive WLM

• Cost evaluation includes memory & cpu load

& time duration

• Includes historical feedback based on past

executions

• Scheduling based on dynamic view of

resource availability in each “lane”

• Expected benefits

- Improved robustness under high load

- Improved SLA achievement

- Improved overall resource efficiency &

throughput

Time Historical Actuals

Memory Historical Actuals

Time Estimate

Memory Estimate

User Requests

Cost

Optimizer
Timeron

Estimate

Scheduling based on static
concurrency limit (in High lane only)

Db2Db2

CostCost

“Soft” resources can be assigned to each “lane”
Scheduling based on actual memory and cpu availability in each
“Lane”

Db2Db2

Intelligent Job Scheduling

Under the Hood: Managing Mixed Workloads for Predictable Performance

User Requests

Db2

Default
Workload

Service Super Class

Default Subclass
(20% share)

Medium Subclass

(20% share)

Ingest

(30% share)

Complex Subclass

(30% share)

Duration?

Query Runtime
> 2 minutes < 10 mins

ETL + Ingest
Activities

Query Runtime
> 10 mins

Query Runtime
< 2 mins

Predict query
duration and
memory
consumption

Query is routed to
service class “lanes”
based on expected
response time (fast
lane / slow lane)

Adaptive admission
based on lane
resource availability /
entitlement (flexible)

Each lane gets defined
resource allotment to
maximize predictability

Adaptive WLM Job Scheduling Flow

Under the Hood: Latency Oriented Job Scheduling

User Requests

Service Superclass

Medium Queries
(10 sec – 10 mins)

Complex Queries
(> 10 mins)

Duration

Interactive Queries
(< 10 sec)

Relative latency order for
interactive jobs for responsiveness

FIFO order for complex
reports for fairness and
predictability

Remap Liars Based on Total
Runtime

VSQB (very short query bias):
queries with < 1 second response
time or small cost bypass admission
control

• Analytical workloads performed at par or better with Adaptive WLM compared to

current WLM using default concurrency thresholds across a set of internal

workloads
• More optimal amount of work is admitted into the system based on CPU Load and memory consumption. Less

thrashing leads to better performance!

• System stability maintained by avoiding overcommitting the system

Some Performance Numbers

20%

30%

14%

-0.20% -1.10%TPC-H 1 TB TPC-H 1 TB (memory constrained) BD Insights - 1 TB BD Insights - 10 TB BD Insights - 10 TB (Deep Analytics)

Performance Improvement with Adaptive WLM

Monitoring Adaptive WLM

• Current working memory usage per partition

• Average statement execution time and resource usage

24

with sortmem (sheapthresshr, sheapmember) as

(select value, member from sysibmadm.dbcfg where name = 'sheapthres_shr')

select member, sort_shrheap_allocated as allocated_mem, sheapthresshr as configured_mem

from table(mon_get_database(-2)) as t, sortmem

where sheapmember = member;

with sortmem (sheapthresshr, member) as

(select value, member from sysibmadm.dbcfg where name = 'sheapthres_shr')

select p.member, wlm_queue_time_total, coord_stmt_exec_time, num_executions,

adm_bypass_act_total, query_cost_estimate, estimated_runtime,

estimated_sort_shrheap_top * 100 / sheapthresshr as estimated_sort_pct,

sort_shrheap_top * 100 / sheapthresshr as sort_pct,

substr(stmt_text,1,256) as stmt

from table(mon_get_pkg_cache_stmt(null,null,null,-2)) p,

sortmem s where p.member=s.member;

Monitoring Adaptive WLM

• Currently executing and queued statements with details

25

with sortmem (sheapthresshr, member) as

(select value, member from sysibmadm.dbcfg where name = 'sheapthres_shr')

select b.application_name, b.session_auth_id, a.entry_time, a.local_start_time,

a.activity_state, a.query_cost_estimate, a.estimated_runtime,

a.effective_query_degree, a.adm_bypassed,

(a.estimated_sort_shrheap_top * 100) / c.sheapthresshr as mem_estimate_pct,

(a.sort_shrheap_top * 100) / c.sheapthresshr as peak_mem_used_pct,

substr(a.stmt_text, 1, 512) as stmt_text

from table(mon_get_activity(null,-2)) as a,

table(mon_get_connection(null,-1)) as b,

sortmem as c

where (a.application_handle = b.application_handle)

order by activity_state;

Monitoring Adaptive WLM

• (cont’d)

26

… ACTIVITY_STATE QUERY_COST_ESTIMATE ESTIMATED_RUNTIME EFFECTIVE_QUERY_DEGREE ADM_BYPASSED MEM_ESTIMATE_PCT PEAK_MEM_USED_PCT …

-------------- ------------------- ----------------- ---------------------- ------------ ---------------- -----------------

EXECUTING 58 36733 24 1 5.14355 4.95233

EXECUTING 58342 267330 24 0 3.14355 4.12342

EXECUTING 58423442 136733 24 0 11.14355 8.95233

EXECUTING 182235523 5367333 24 0 7.14355 9.95233

QUEUED 679342340083 104336733 24 0 75.14355 0.00

Queued job waiting
for admission

Memory estimates
used for admission

Peak memory
usage

Very short
query admission
bypass

Adaptive WLM Configuration

• Out-of-the-box configuration is designed to be largely autonomous + adaptive with no

tuning requirements

• One optional tunable that you should be aware of is the WLM_AGENT_TRGT_LOAD

database configuration parameter

• This parameter controls the maximum thread load per core that the workload

manager will allow into the system at a time to avoid degrading processing efficiency.

• The thread load per core on the database is computed as the sum of the DEGREE of all

the queries executing on the system.

• Example:
• Running 6 queries with DEGREE=12 on a 12-core system results in a thread load per core of 6

• Running 24 queries with DEGREE=1 on a 12-core system results in a thread load per core of 2

27

Adjusting WLM_AGENT_TRGT_LOAD

• The default WLM_AGENT_TRGT_LOAD is computed based on the system hardware

and should be optimal for most scenarios

• Consider increasing the WLM_AGENT_TRGT_LOAD if:
• The workload manager is queueing jobs AND

• There is sufficient sort memory to accommodate more jobs AND

• None of the system resources are saturated (CPU, I/O, network)

• Consider decreasing the WLM_AGENT_TRGT_LOAD if:
• The system is running a concurrent workload AND

• The CPU run queues on the system are very heavily loaded and it’s degrading system throughput

• Example:

28

UPDATE DB CFG FOR MYDB USING WLM_AGENT_TRGT_LOAD 24

Adjusting SORTHEAP and SHEAPTHRES_SHR

• Since Adaptive WLM manages admission based on query resource demands altering

the working memory configuration will have a direct impact on job scheduling

behavior

• Increasing SORTHEAP relative to SHEAPTHRES_SHR
• Allows more memory per operator (and by extension query) reducing execution time, but fewer jobs will

be able to run simultaneously

• Decreasing SORTHEAP relative to SHEAPTHRES_SHR
• Allows less memory per operator (and by extension query) increasing execution time, but more jobs will

be able to run simultaneously

• Increasing SHEAPTHRES_SHR by trading off BUFFERPOOL memory
• This strategy can allow increased concurrency without otherwise sacrificing individual query

performance

• Useful in cases where significant large queries result in concurrency bottlenecks
29

Adaptive WLM Simplified User Model

Adaptive WLM Simplified User Model

• In addition to its intelligent and autonomous out of the box workload management the

Adaptive WLM technology can also enable a much simpler and more powerful user

model

• Recall that a lot of the complexity in configuring the Db2 Workload Manager today is

the requirement for the user to set and adjust lower level fixed limits to achieve the

desired behavior

• By enabling more goal oriented configurations that the system adapts to meet based

on the workload we can step up a level of abstraction and create far more user friendly

workload management capabilities

• The following section describes our thinking around how we will allow the user to

define a customized workload management configuration with Adaptive WLM
• Note this is not a commitment to deliver the specified function

31

Recap of where we are today….

Workload A

Workload B

Workload C

Default workload

Workload D
2000 (Soft)

Work
Action

Set
3000 (Hard)

1000 (Soft)

User Requests

4000 (Hard)

2000 (Hard)

Service Superclasses

2000 (Soft)
Work
Action

Set
3000 (Hard)

1000 (Soft)

4000 (Hard)

2000 (Hard)

Application A

Application B

Application A

Application B

Reactive thresholds
abort runaway
queries

7000 (Hard)

3000 (Hard)
Concurrency Limit = w

Concurrency Limit = x

Concurrency Limit = z

Concurrency Limit = y

Concurrency Limit = w’

Concurrency Limit = x’

Concurrency Limit = z’

Concurrency Limit = y’

Subclass concurrency
limits control mix of
work and overall
superclass admission

CPU shares control
division of CPU
between superclasses
and subclasses

Subclass concurrency
limits control mix of
work and overall
superclass admission

Adaptive WLM User Model (future)

Workload A

Workload B

Workload C

Default workload

Workload D

User Requests
Service Superclasses

Application A

Application B

Application A

Application B

Resource share controls admission and
division of runtime resources

30 Soft Resource Shares

70 Hard Resource Shares

create service class sc1

soft resource shares 30

create service class sc2

hard resource shares 70

Intelligent resource
based job scheduling
and runtime CPU
control ensures
fairness +
responsiveness and
automatically adapts
to any workload

Simplified
reactive
thresholds abort
runaway queries

More User Model Details (future)

• Create a service superclass pre-configured for one of three defined

workload types
• INTERACTIVE for response sensitive jobs

• BATCH for longer running jobs

• MIXED for workloads that run a combination of both

• Assign a resource share to the service class
• Specifies the proportion of database resources this service class is entitled to

• Shares can be either HARD or SOFT for more flexible vs strict resource

assignment

• The system does the rest!

34

An example

• Divide the database resources between 3 distinct workloads
• High priority interactive reports that require a fast response

• ETL jobs that need sufficient resources to complete within a specific window

• Other general purpose tasks on the system that don’t fall into the above

categories

35

create service class HIPRI soft resource shares 25 for INTERACTIVE

create service class ETL soft resource shares 25 for BATCH

create service class GENERAL soft resource shares 50 for MIXED

create workload REPORTS session_user(‘EDW_REPORTS’) service class HIPRI

create workload ETLJOBS session_user(‘EDW_ETL_USER’) service class ETL

alter workload SYSDEFAULTUSERWORKLAOD service class GENERAL

Simplified Thresholds

• To complement the simplified service class model we plan to

introduce simplified syntax around thresholds to support workload

governance

• Example:
• Current CREATE THRESHOLD DDL

• Simplified CREATE THRESHOLD DDL

36

CREATE THRESHOLD LONGRUNNINGSQL FOR DATABASE ACTIVITIES

ENFORCEMENT DATABASE WHEN ACTIVITYTOTALRUNTIME > 1 HOUR

STOP EXECUTION;

CREATE THRESHOLD LONGRUNNINGSQL FOR DATABASE

WHEN ACTIVITYTOTALRUNTIME > 1 HOUR STOP EXECUTION;

New Monitoring Functionality

• SQL Functions
• MON_GET_SERVICE_SUPERCLASS_STATS (future)

• Higher level statistics group to match more abstract control levels + additional

metrics related to Adaptive WLM behavior

• MON_GET_ACTIVITY

• Additional metrics to understand Adaptive WLM behavior

• See also prior examples

• Event Monitors
• STATISTICS (future)

• New logical grouping for superclass statistics + metrics

• ACTIVITY

• Additional metrics to understand Adaptive WLM behavior

37

Other Nuts and Bolts

• Adaptive WLM simplifies and abstracts some of the lower level

workload manager constructs but it is still fully integrated /

compatible with them

• Subclasses / work-class sets / work action sets are still the

underlying mechanisms for controlling finer grained job

scheduling and resource management

• This last section summarizes the lower level constructs that are

being introduced by Adaptive WLM for power users that want to

know all the gory details
38

New WLM objects introduced by Adaptive WLM

• Service superclasses + subclasses (future)
• Resource share attribute for admission + runtime control

• Superclass definitions that pre-define subclasses + work class / action sets

• Work class / work action sets
• New mapping based on query RUNTIME

• Thresholds
• Simplified threshold syntax (optional)

• New ACTIVITYTOTALRUNTIME threshold

• New ACTIVITYTOTALRUNTIMEINALLSC remapping threshold

39

Summing Up

• Innovative new workload management technology in Db2

Warehouse that automatically adapts to your workload

• Leverages intelligent job scheduling for improved stability and

performance

• Simplified user model will allow you to quickly and easily divide

database resources between different workloads in order to

prioritize and meet your performance goals

• Technology improvements will continue to roll out incrementally

40

Questions?

41

Session code:

Please fill out your session
evaluation before leaving!

David Kalmuk

IBM
dckalmuk@ca.ibm.com

D10

42

Please fill out your session
evaluation before leaving!

